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Preface

I first learned formal logic from Michael Byrd at UW-Madison, using Lemmon’s Beginning
Logic, and first taught logic in 2008 as a teaching assistant for Branden Fitelson at UC
Berkeley, using Forbes’ Modern Logic. When I started to develop my own logic course, I
continued to use Forbes’ book, which I liked for its thorough treatment of the three central
components of an introductory logic class: symbolization, semantics, and natural deduction.

However, over time I became dissatisfied with Modern Logic for two reasons. First, the
Lemmon-style notation that it uses for natural deduction is much less accessible to beginners
than the Fitch-style notation found in other texts. And second, Oxford University Press
started printing fewer copies, making it rather expensive — more expensive, at any rate, than
I thought an introductory logic text should be. By the time I began teaching at Syracuse in
2015, I therefore started listing Forbes’ book only as a recommended text, and relied heavily
on the detailed lecture notes I had put together over the years.

But in the longer term, I faced a choice: either select a new textbook, or transform my
own notes into a book. The open-source nature of Tim Button’s forall x: Cambridge offered
me way to do both: I could take his already excellent text (which inter alia included a Fitch-
style deduction system) and supplement it with material of my own. And so I’ve come to
make my own addition to the “groaning shelves” of logic textbooks, to borrow Forbes’
description — though with electronic distribution, the groan has thankfully become more
metaphorical. The main changes I’ve made to forall x: Cambridge are the following:

▷ I’ve changed the first chapter by e.g. elucidating the modal notion of validity using
possible worlds, and distinguishing it from the notion of formal validity more.

▷ I’ve added more on the semantics of truth-functional and especially first-order logic,
particularly as concerns the construction of countermodels.

▷ I’ve made some changes to the natural deduction rules in both parts.

▷ I’ve modified the syntax for the first-order language, reordered the presentation of
various topics, and revised the practice problems.

Besides the obvious debt the present text owes to the forall x editions that P.D. Magnus
and Tim Button have so generously made available, and to Forbes’ Modern Logic, I also
draw on ideas I’ve picked up from Barwise and Etchemendy’s Language, Proof, and Logic,
Belnap’s The Art of Logic, Goldfarb’s Deductive Logic, forall x: Calgary Remix, and lecture
notes by Branden Fitelson, Daniel Warren, and John MacFarlane.
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“When you come to any passage you don’t understand, read it again: if you
still don’t understand it, read it again: if you fail, even after three readings,
very likely your brain is getting a little tired. In that case, put the book away,
and take to other occupations, and next day, when you come to it fresh, you
will very likely find that it is quite easy.

“If possible, find some genial friend, who will read the book along with you,
and will talk over the difficulties with you. Talking is a wonderful smoother-
over of difficulties. When I come upon anything — in Logic or in any other
hard subject — that entirely puzzles me, I find it a capital plan to talk it over,
aloud, even when I am all alone.”

Lewis Carroll, Symbolic Logic (1897)



What is Logic? 1

1.1 Arguments

This book provides an introduction to logic. But what is logic? This is a surprisingly difficult
question, still debated by philosophers. But generally speaking, logic is about distinguishing
valid from invalid arguments.

In everyday language, the word ‘argument’ is often used to describe an activity that peo-
ple engage in. On twitter, or youtube, or the news, people often have heated debates, and
you’ve probably had arguments like this with your family and friends. Logicians tend to be
a pretty sedate crowd, and they mean something very different by ‘argument’. In logic, an
argument is just a collection of statements. More specifically:

An ARGUMENT is a collection of one or more statements, exactly one of
which is the argument’s conclusion and the rest of which are its premises.

Here is an example of an argument:

(1) All rabbits are mammals.
Bugs Bunny is a rabbit.
∴ Bugs Bunny is a mammal.

This argument consists of three statements. One of them is the argument’s conclusion, which
we indicate by the three dots ∴ These dots are read as “therefore.” The rest are the premises.
This argument has two premises, but arguments can have any number of premises (though,
again, only one conclusion).

Notice that our logician’s definition of an argument is very permissive. Consider the
following:

There is a bassoon-playing dragon in the Cathedra Romana.
∴ Salvador Dali was a poker player.

We have a premise and a conclusion, and so we have an argument. Admittedly, it’s a terrible
argument, but it is still an argument.

Here’s another argument, one that’s not as obviously terrible:

(2) All rabbits are mammals.
Winnie the Pooh is a mammal.
∴ Winnie the Pooh is a rabbit.

1



1. WHAT IS LOGIC? 2

In this case the premises at least involve the same concepts as the conclusion. But this
argument still isn’t as good as (1) from earlier: unlike the earlier example, this argument
isn’t valid — its conclusion doesn’t follow from its premises. But what exactly does validity,
or “following from,” consist in? What’s wrong with argument (2) as compared to (1)?

One thing that’s worse about the second argument is that its conclusion is false: Pooh
isn’t a rabbit, he’s a bear! But that isn’t what distinguishes valid from invalid arguments in
general, because there are valid arguments with false conclusions, and invalid arguments
with true conclusions. For example:

(3) All rabbits are birds.
Winnie the Pooh is a rabbit.
∴ Winnie the Pooh is a bird.

(4) All rabbits are mammals
Bugs Bunny is a mammal.
∴ Bugs Bunny is a rabbit.

Argument (3) is valid, but has a false conclusion. And argument (4) has a true conclusion,
as well as true premises, but it still isn’t valid, because its conclusion doesn’t follow from
its premises: that all rabbits are mammals and that Bugs Bunny is a mammal doesn’t yet
guarantee that Bugs Bunny is a rabbit.

Validity isn’t determined by whether the premises or the conclusion are as a matter of
fact true. It rather has to do with the relationship between the premises and the conclusion.
When we ask about validity we want to know whether, if all the premises were true, the
conclusion would also have to be true. Put another way:

An argument is VALID if and only if it is impossible for all of its premises
to be true but its conclusion false.

Let’s unpack some of the concepts involved in the two definitions we’ve encountered a little
bit more.

■ Exercises 1.1
As you’ve seen, we always put the conclusion at the end of an argument and indicate it
using the three “therefore dots” ∴ Informally presented arguments don’t always have the
conclusion at the end, however — it can appear at the beginning, or even in the middle. In
each of the following arguments, highlight the phrase which expresses the conclusion:

1. It is sunny. So I should take my sunglasses.
2. It must have been sunny. I did wear my sunglasses, after all.
3. No one but you has had their hands in the cookie-jar. And the scene of the crime is

littered with cookie-crumbs. You’re the culprit!
4. Miss Scarlett and Professor Plum were in the study at the time of the murder. And

Reverend Green had the candlestick in the ballroom, and we know that there is no
blood on his hands. Hence Colonel Mustard did it in the kitchen with the lead-piping.
Recall, after all, that the gun had not been fired.
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1.2 Background Concepts

First, we said that an argument is a collection of STATEMENTS. Statements are sentences
that are either true or false. Truth and falsity are called TRUTH-VALUES. The truth-value
of a statement is determined by what the world is like. A statement like ‘Syracuse is in
New York State’ describes the world as being a certain way. This statement happens to be
true because the world in fact is as the statement describes it. ‘Syracuse is in Alaska’, by
contrast, describes the world incorrectly, and is therefore false. As the ancient philosopher
(and logician!) Aristotle put it in his book Metaphysics:

“To say of what is that it is not, or of what is not that it is, is false, while to say
of what is that it is, and of what is not that it is not, is true.” (1011b25)

It’s important to notice that not all English sentences count as statements in this sense.
For example, none of the following sentences can be assessed as true or false:

• Welcome to the Syracuse Airport!
• Please have your ID ready.
• Are there any liquids in your bag?

A sentence like ‘please have your ID ready’ isn’t meant to describe the world, but to ask
you to do something. Similarly, ‘Welcome to Syracuse Airport’ is just a greeting, and isn’t
meant to offer an accurate or inaccurate description of the world. And although the answer
to the last question on this list has a truth-value, the question itself doesn’t. In general, things
like greetings, requests, orders, and questions don’t have truth-values, therefore don’t count
as statements, and for that reason can’t be premises or conclusions of arguments. Though
it’s important to keep this point in mind, moving forward we’ll generally use the words
“statement” and “sentence” interchangeably.

Next, notice that because a statement’s truth value depends on what the world is like,
its truth-value could have been different if the world had been different. For example, the
sentence ‘Rieppel is a philosopher’ is in fact true, but if I had taken up a different career it
would have been false. Conversely, ‘Rieppel is a professional juggler’ is false, but if I had
gone to juggling school instead of continuing with philosophy, it would have been true.

Philosophers often invoke the notion of a POSSIBLE WORLD in this connection. The idea
is that besides the actual world, there are various other possible worlds, other ways things
could have been — alternative histories, or alternative universes, if you like. ‘Rieppel is a
professional juggler’ is false in the actual world, but it is true in other possible worlds, ones
where I went to juggling school or joined the circus. Similarly, ‘Rieppel is a philosopher’
is as a matter of fact true, but it is false in other possible worlds where I didn’t pursue
philosophy. Sentences like this, which are true in some possible worlds and false in others,
are said to be CONTINGENT.

Other sentences are not contingent. For example, ‘Syracuse either is or is not in New
York State’ isn’t just true in the actual world, it’s true in every possible world, that is, it’s a
NECESSARY TRUTH. Mathematical truths are another example: ‘2+2 = 4’ is again true in
every possible world, and therefore a necessary truth. At the other extreme, sentences like
‘Syracuse both is and is not in New York State’ and ‘2+2 = 5’ are false in every possible
world, or NECESSARILY FALSE.
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Returning to arguments, you can think of the notion of validity in terms of possible worlds
too. We said that an argument is valid just in case it’s impossible for all of its premises to be
true but its conclusion false. Phrased in terms of possible worlds, this becomes:

An argument is VALID if and only if there is no possible world where all
of its premises are true but its conclusion is false.

Equivalently put: an argument is valid if its conclusion is true in every possible world in
which all of its premises are true.

This gives us an informal way to test whether an argument is valid: we imagine a world
where all the premises are true, and then ask ourselves whether the conclusion would have
to be true as well at that world. If so, the argument is valid. On the other hand, if you can
imagine a world where all the premises are true but the conclusion is still false, the argument
isn’t valid. So again, whether an argument is valid or not isn’t determined by whether its
premises and conclusion are actually true or false. It’s about the connection between them
— whether there’s any way for the premises to be true but the conclusion false.

There are other logical concepts that we’ll encounter in this class that involve the notions
of necessity and possibility, besides validity. Some we’ve already mentioned:

▷ A sentence is CONTINGENT if and only if it is possible for it to be
true, and also possible for it to be false.

▷ A sentence is a NECESSARY TRUTH if and only if it is not possible
for it to be false.

▷ A sentence is a NECESSARY FALSEHOOD if and only if it is not pos-
sible for it to be true.

▷ Two sentences are CONTRADICTORY if and only if they necessarily
have opposite truth values.

▷ Two sentence are EQUIVALENT if and only if they necessarily have
the same truth value.

▷ A collection of sentences is JOINTLY CONSISTENT if and only if it
is possible for all of them to be true together, and JOINTLY INCON-
SISTENT otherwise.

Notice that these concepts apply to different things. Whereas the first three concern proper-
ties of single sentences, the next two concern properties of pairs of sentences, and the last
ones concern properties of whole collections of sentences. Validity is again slightly differ-
ent, because it is a property had (or lacked) by only those collections of sentences that also
have a designated conclusion, i.e. by those collections that are arguments.

■ Exercises 1.2
A. For each of the following: is it necessarily true, necessarily false, or contingent?

1. Caesar conquered Gaul.
2. Someone once conquered Gaul.
3. If Caesar conquered Gaul, then someone has conquered Gaul.
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4. Caesar either conquered Gaul or he did not.
5. Caesar conquered Gaul even though he did not.

B. Say whether the following arguments are valid or invalid.

1. All bananas are round.
Some round things are yellow.
∴ All bananas are yellow.

2. Rieppel is a philosophy professor and ten meters tall.
∴ Rieppel is ten meters tall.

3. Rieppel is either a philosophy professor or ten meters tall.
∴ Rieppel is ten meters tall.

4. Rieppel is either a philosophy professor or ten meters tall.
Rieppel is not a philosophy professor.
∴ Rieppel is ten meters tall.

5. Syracuse is in Brazil.
∴ It’s either raining or not raining in San Francisco today.

C. Consider the following three statements:

(a) There are exactly two apples in the bag.
(b) There are more than three apples in the bag.
(c) There are fewer than four apples in the bag.

Now answer these questions:

1. Are (a) and (b) consistent? Are they contradictory?
2. Are (a) and (c) consistent? Are they equivalent?
3. Are (b) and (c) consistent? Are they contradictory?
4. Are any two necessary truths consistent? Are they equivalent?
5. Are any contingent statement and any necessary truth consistent?
6. Are two necessary falsehoods consistent? Are they equivalent?
7. Are any two contingent statements consistent?

1.3 Good and Bad Arguments

Being valid is certainly one thing that makes for a good argument, intuitively speaking. But
there’s more to being a good argument than that.

First off, if an argument has an obviously false premise, then even if it is valid, it remains
of limited interest because it doesn’t establish its conclusion. By contrast, if an argument is
valid and all of its premises are true, then we know that its conclusion has to be true too.
Arguments like this are said to be sound:
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An argument is SOUND if and only if it (i) is valid, and (ii) has premises
that are in fact true.

Arguments are generally intended to be not just valid, but sound. So if you’re faced with
an argument, in a philosophy class or elsewhere, whose conclusion you want to resist, you
have two options: you can either try to show that the argument is not valid, or you can try
to show that one of its premises is false (and the argument therefore isn’t sound). What
you can’t do is accept it as valid, and concede that its premises are true, but still reject the
conclusion as false: if it’s valid, and has true premises, its conclusion has to be true too.

Although it’s important in practice to determine whether or not the premises of an argu-
ment are in fact true, it is (for the most part) not the job of logic to do this. The job of logic
is just to determine whether or not an argument is valid. The task of determining whether
the argument’s premises are in fact true (and the argument sound) is usually best left to
experts in the relevant field: biologists, historians, philosophers, physicists, economists, or
whomever.

A second way in which validity is not all there is to good argumentation comes out if you
consider the following:

In January 2016, it snowed in Syracuse.
In January 2017, it snowed in Syracuse.
In January 2018, it snowed in Syracuse.
In January 2019, it snowed in Syracuse.
In January 2020, it snowed in Syracuse.

So: It snows every January in Syracuse.

This argument generalizes from observations about several past cases to a conclusion
about all cases. The argument isn’t valid in our sense, because even if it snowed in January
in many recent years, that doesn’t mean it’s impossible for it not to snow in some future
year. The argument could be made stronger by adding additional premises, about other
snowy Syracuse Januaries in the past. But however many premises of this sort we add, the
argument will remain invalid.

That doesn’t mean that it’s a bad argument. Arguments like this one are called INDUC-
TIVE arguments, and they are often used legitimately and with great success in science and
everyday life. In this book, we will set aside the difficult question of what makes for a good
inductive argument. What logic studies is the different notion of DEDUCTIVE validity —
where the truth of the premises has to guarantee the truth of the conclusion — and this will
be the focus of our concern.

■ Exercises 1.3
For these questions, you don’t need to worry about the distinction between validity and
“validity in virtue of logical form” to be discussed in §1.4 below. You can just use the
definition of validity we gave in §1.1 and §1.2 above.

A. say whether the following are true or false.

1. All valid arguments have only true premises.
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2. All arguments with true premises and a true conclusion are sound.
3. Every argument with false premises is invalid.
4. Some arguments with true premises are unsound.
5. Some invalid arguments have true conclusions.
6. If an argument has true premises and a false conclusion, it’s invalid.
7. If the conclusion of an argument is a necessary truth, the argument is valid.
8. Every unsound argument is invalid.
9. If an argument has true premises, it’s valid.

10. If the conclusion of an argument is a necessary falsehood, the argument is valid.
11. If an argument has a necessary falsehood as a premise, the argument is valid.
12. An invalid argument can be made valid by the addition of a new premise.
13. A valid argument can be made invalid by the addition of a new premise.
14. Some sound arguments have a false conclusion.

1.4 Formal Validity

There’s one last complication we have to address before setting out on our investigation of
logic. Consider the following arguments:

(5) This beach ball is green all over.
∴ This beach ball is not red all over.

(6) Reihan is a bachelor.
∴ Reihan is not married.

In both cases it is impossible for the premise to be true and the conclusion false: if some-
thing’s green all over it can’t be any other color, and being unmarried is part of what it is to
be a bachelor. Both arguments are therefore valid.

But there’s an important difference between valid arguments like these and one like the
following:

(7) Jenny is either happy or sad.
Jenny is not happy.
∴ Jenny is sad.

A or B
not-A
∴ B

This argument is also valid, but there’s more. It has a special structure, or logical form, as
represented to the right. This is an excellent structure for an argument to have, because any
argument of this form will be valid, no matter what sentences we put in place of A and B!
Or consider our Bugs Bunny argument, which has the structure represented to the right:

(1) All rabbits are mammals.
Bugs Bunny is a rabbit.
∴ Bugs Bunny is a mammal.

All F are G
a is F
∴ a is G

Again, this is a great structure, because any argument of this form will be valid, no matter
what predicates we put in for F and G or what name we put in for a.
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The general point is that arguments like (7) and (1) are valid simply in virtue of their
logical form. They each exhibit a logical structure which renders any argument with that
structure valid. By contrast, arguments (5) and (6), though valid, are not valid in virtue of
their logical form. For example, the form of (6) could be represented as follows:

(6) Reihan is a bachelor
∴ Reihan is not married.

a is F
∴ a is not-G.

Here the premise ascribes a certain property (being a bachelor) to an individual, and the
conclusion then denies another property (being married) of that individual. However, there
are other arguments that share this same structure but aren’t valid:

Reihan is a runner.
∴ Reihan is not married.

a is F
∴ a is not-G.

This isn’t valid because it’s trivial to imagine a world where Reihan is a runner but also
married. What made argument (6) valid wasn’t its logical form, but the specific meanings
of the words ‘bachelor’ and ‘married’ that occur in its premise and its conclusion. Other
arguments that have the same form but involve words with different meanings (e.g. ‘runner’)
may no longer be valid. Logic is all about identifying patterns that make arguments valid.
So it only cares about FORMALLY VALID arguments like (1) and (7), not arguments like (5)
and (6) that are valid for reasons other than their logical form.

Due to logic’s concern with form, we will approach the task of distinguishing valid from
invalid arguments in an indirect way. We will first introduce a formal language in which
we can symbolize English arguments. Doing this lets us represent the logical forms of those
arguments. We will then give a precise definition of validity for arguments cast in this formal
notation. And this will in turn give us our indirect means of distinguishing valid from invalid
arguments in English: if an English argument can be symbolized as a valid argument in our
formal notation, then that English argument is formally valid.

In fact, we will study two systems of logic, involving two different formal languages.
These systems will differ in what words they treat as logical constants, that is, which words
they treat as indicative of logically significant structure, or form. The first system we will
study is Truth-Functional Logic (or TFL). It will let us represent the structure of arguments
like (7) via the symbolization to the right:

(7) Jenny is either happy or sad.
Jenny is not happy.
∴ Jenny is sad.

(A∨B)
¬A
∴ B

This language treats expressions like ‘either . . . or’ and ‘not’ as logical constants (repre-
sented by ‘∨’ and ‘¬’ respectively), and uses upper-case letters to represent complete state-
ments (like ‘A’ for ‘Jenny is happy’, and ‘B’ for ‘Jenny is sad’). TFL is the topic of Part 1
of this book.

In Part 2 of the book, we will turn to First-Order Logic (or FOL). It will let us represent
the structure of things like the Bugs Bunny argument via the symbolization to the right:
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(1) All rabbits are mammals.
Bugs Bunny is a rabbit.
∴ Bugs Bunny is a mammal.

∀x(Fx→ Gx)
Fa
∴ Ga

This system extends Truth-Functional Logic by treating words like ‘all’ as logical constants
(represented by ‘∀’).1 It also lets us represent some of the internal structure of a simple
statement like ‘Bugs Bunny is a rabbit’, showing that it is formed by combining the name
‘Bugs Bunny’ (represented as ‘a’) with the predicate ‘is a rabbit’ (represented by ‘F’). With
this very short preview out of the way, let’s get started with logic!

1At this point you might be wondering how logicians decide which English words to treat as logical con-
stants, and represent by special logical symbols that indicate “logical form.” This is a difficult philosophical
question about logic that we won’t have a chance to delve into here. If you’re interested, check out the Stanford
Encyclopedia of Philosophy’s entries on Logical Constants and Logical Consequence.

http://plato.stanford.edu/entries/logical-constants/
http://plato.stanford.edu/entries/logical-consequence/
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Symbolization in TFL 2

2.1 Atomic sentences

In this chapter, we’ll look at how to symbolize English arguments in the language of
truth-functional logic (or TFL), thereby revealing their truth-functional logical structure,
or form.1 Here is an example of a symbolization in TFL:

(1) It is raining outside.
If it is raining outside, then Jenny is miserable.
∴ Jenny is miserable.

A
If A, then C
∴ C

A
(A→C)
∴ C

In symbolizing this argument, I began by replacing subsentences of larger sentences with
uppercase letters. For example, ‘it is raining outside’ is a subsentence of ‘If it is raining
outside, then Jenny is miserable’, and we replaced this subsentence with the letter ‘A’.
Similarly, we used ‘C’ to symbolize the subsentence ‘Jenny is miserable’.

Our formal language, TFL, uses uppercase letters as its ATOMIC SENTENCES. These will
be the basic building blocks, or “atoms,” out of which more complex TFL sentences are
built. There are only twenty-six letters of the alphabet, but in principle there is no limit
to the number of atomic sentences that we might want to consider. By adding numerical
subscripts to letters, we obtain as many atomic sentences as we need. So the following all
count as atomic sentences of TFL:

A,B,C,P,X ,Z,A1,A2,P12,P234

To indicate which atomic sentence of TFL is being used to represent which English sen-
tence, we provide a SYMBOLIZATION KEY like the following:

A: It is raining outside
C: Jenny is miserable

Doing this does not fix this symbolization once and for all. We are just saying that, for the
time being, we will use the atomic TFL sentence ‘A’ to symbolize the English sentence ‘It

1What does “truth-functional” mean? We’ll get to that in the next chapter, on the semantics of TFL.

11
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is raining outside’, and ‘C’ to symbolize ‘Jenny is miserable’. Later, when we are dealing
with different sentences or different arguments, we can provide a new symbolization key
that associates these atomic TFL sentences with different English sentences.

It is important to recognize that whatever internal structure an English sentence might
have is lost if it is symbolized by an atomic sentence of TFL. From the point of view of
TFL, an atomic sentence has no internal (or “subatomic”) structure. It can be used to build
more complex sentences, but it cannot be taken apart.

For this reason, English sentences that have an internal logical structure to them, like
the conditional ‘If it’s raining outside, then Jenny is miserable’, should not be symbolized
using atomic sentences of TFL. If we just symbolized this sentence as ‘P’, for example, our
symbolization would obscure the fact that it has the form of an ‘if . . . then . . . ’ statement,
and that it contains subsentences that also occur on their own as premise and conclusion in
our argument (1) above. We would thefore miss out on the logical form in virtue of which
argument (1) is valid. For this reason we have to symbolize logically complex sentences of
English via complex (i.e. non-atomic) sentence of TFL, in this case ‘(A→C)’.

Complex sentences of TFL are built up by combining atomic sentences with connectives.
TFL connectives will be used to symbolize English connectives like ‘if . . . then’, ‘or’ and
‘not’. Just as these English connectives can be applied to sentences to form new, bigger
sentences, so TFL connectives can be applied to atomic sentences to build larger, complex
sentences of TFL. In total, there are five connectives in TFL. This table summarizes them,
and gives you a rough indication of their meaning:

symbol name rough meaning
¬ negation ‘It is not the case that. . .’
∧ conjunction ‘Both. . . and . . .’
∨ disjunction ‘Either. . . or . . .’
→ conditional ‘If . . . then . . .’
↔ biconditional ‘. . . if and only if . . .’

For the remainder of this chapter, we have two main objectives, a practical one and a
technical one. The first, practical objective is to learn how to symbolize logically complex
English sentences using our TFL connectives. The second, more technical objective will be
to give a precise grammar, or syntax, for the language of TFL, which explains exactly how
TFL connectives combine with atomic sentences to produce complex TFL sentences. We’ll
turn to this technical task later, after we’ve gotten some practice using the language of TFL
to symbolize English sentences.

2.2 Negation

Consider how we might symbolize these sentences:

(2) Mary is in Barcelona.
(3) It is not the case that Mary is in Barcelona.
(4) Mary is not in Barcelona.

In order to symbolize (2), we will need an atomic sentence. We might offer this symbol-
ization key:
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B: Mary is in Barcelona.

Since (3) is obviously related to (2), we do not want to symbolize it with a completely
different sentence, say ‘A’. Sentence (3) basically says ‘It is not the case that B’. In order to
symbolize this, we need the symbol for negation, ‘¬’. So we can symbolize (3) as ‘¬B’.

Sentence (4) also contains the word ‘not’. And it is obviously equivalent to (3), so we can
also symbolize it with ‘¬B’.

A sentence can be symbolized as ¬ϕ if it can be paraphrased in English
as ‘It is not the case that ϕ’.

Here’s another example:

(5) The widget can be replaced.
(6) The widget is irreplaceable.
(7) The widget is not irreplaceable.

Let’s use the following symbolization key:

R: The widget is replaceable

Sentence (5) can then be symbolized by ‘R’. Next, (6) says the widget is irreplaceable,
which means that it is not the case that the widget is replaceable. So even though (6) does not
contain the word ‘not’, we can still symbolize it as ‘¬R’. Sentence (7) can be paraphrased
as ‘It is not the case that the widget is irreplaceable.’ Which can again be paraphrased as ‘It
is not the case that it is not the case that the widget is replaceable’. So we can symbolize
this with the TFL sentence ‘¬¬R’.

At this point you might be wondering: don’t double negatives cancel out, so that ‘¬¬R’
is equivalent to plain ‘R’? We’ll get into meaning, or semantics, of TFL sentences in the
next chapter; but the quick answer is that, yes, these are equivalent, and (7) could also be
symbolized as ‘R’. Still, ‘¬¬R’ is the preferred symbolization, because it represents more
of the logical structure implicit in the English sentence (7).

Some care is needed when handling negations. Consider:

(8) Jane is happy.
(9) Jane is unhappy.

If we let ‘H’ symbolize ‘Jane is happy’, we can symbolize (8) as ‘H’. However, it would be
a mistake to symbolize (9) with ‘¬H’. Sentence (9) does not mean the same thing as ‘It is
not the case that Jane is happy’. Jane might be neither happy nor unhappy; she might be in
a state of blank indifference. In order to symbolize (9), then, we would need a new atomic
sentence of TFL.

2.3 Conjunction

Consider the sentence:
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(10) Adam is athletic, and Barbara is athletic.

We will need separate atomic sentences to symbolize the two subsentences in (10):

A: Adam is athletic.
B: Barbara is athletic.

We will use ‘∧’ to symbolize ‘and’, and thus symbolize (10) as ‘(A∧B)’. This connec-
tive is called CONJUNCTION. We also say that ‘A’ and ‘B’ are the two CONJUNCTS of the
conjunction ‘(A∧B)’.

There are few things to notice about conjunction. First, in English the word ‘and’ doesn’t
always conjoin two sentences:

(11) Barbara is athletic and energetic.
(12) Barbara and Adam are both athletic.

In (11) the word ‘and’ conjoins two adjectives, rather than two sentences. But it can be
paraphrased as ‘Barbara is athletic and Barbara is energetic’ where ‘and’ now does conjoin
two sentences. So if we use ‘E’ symbolize ‘Barbara is energetic’, we can symbolize the
entire sentence as ‘(B∧E)’. In sentence (12), ‘and’ conjoins two names. Again, though,
this can be paraphrased in terms of a conjunction of two sentences, as ‘Barbara is athletic
and Adam is athletic’, and can therefore be symbolized as ‘(B∧A)’.2

Second, conjunction can be expressed in English using words other than ‘and’:

(13) Although Barbara is energetic, she is not athletic.
(14) Adam is athletic, but Barbara is not.

In (13), the word ‘although’ sets up a contrast between the first part of the sentence and
the second part. Nevertheless, the sentence tells us both that Barbara is energetic and that
she is not athletic. So we can symbolize it as a conjunction:

B: Barbara is athletic.
E: Barbara is energetic.

Symbolization of (13): (E ∧¬B)

Of course we have lost all sorts of nuance in this symbolization. There is a distinct dif-
ference in tone between the English sentence (13) and ‘Both Barbara is energetic and it is
not the case that Barbara is athletic’. TFL does not (and cannot) preserve these nuances,
however, and so we do not attend to them when symbolizing English into TFL. Notice also
that in the symbolization key we replaced the pronoun ‘she’ with ‘Barbara’, since it might
otherwise be unclear who ‘she’ is meant to refer to. In general: always use names in place
of pronouns in your symbolization key!

2Some care is needed with this. Not all sentences where ‘and’ conjoins two names can be paraphrased in a
way where ‘and’ conjoins two sentences. For example, ‘Barbara and Adam carried the piano upstairs’ may not
mean the same as ‘Barbara carried the piano upstairs and Adam carried the piano upstairs’, since the latter (but
not the former) is compatible with them each carrying it individually rather than together.
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Sentence (14) raises similar issues. The word ‘but’ sets up a contrast between the two
parts of the sentence, but this is not something that TFL can deal with. We can paraphrase
the sentence as ‘Both Adam is athletic, and Barbara is not athletic’. Notice that the second
conjunct involves a negation as well. Using the sentence letters already introduced, we can
symbolize (14) as ‘(A∧¬B)’.

There are other words besides ‘although’ and ‘but’ that can be used to express conjunc-
tion. For example, ‘Barbara is energetic, however she is not athletic’ and ‘Barbara is ener-
getic despite not being athletic’ expresses the same conjunctive claim as sentence (13) from
above, and get symbolized using the same TFL sentence. In general, the symbolization
guideline for conjunction is:

A sentence can be symbolized as (ϕ ∧ψ) if (nuance aside) it can be para-
phrased in English as ‘Both ϕ and ψ’.

You might be wondering why we always put brackets around the conjunctions. The rea-
son can be brought out by thinking about negation interacts with conjunction. Consider:

(15) Customers will not get both soup and salad.
(16) Customers will not get soup but will get salad.

Sentence (15) can be paraphrased as ‘It is not the case that: both customers will get soup
and cusomers will get salad’. Using the following symbolization key:

S1: Customers get soup.
S2: Customers get salad.

we would symbolize ‘both customers will get soup and customers will get salad’ as ‘(S1∧
S2)’. To symbolize the whole of sentence (15), then, we negate this, giving us ‘¬(S1∧S2)’.
Sentence (16), on the other hand, gets symbolized as a conjunction whose first conjunct is
negated ‘(¬S1∧S2)’.

These English sentences mean different things, and their symbolizations differ accord-
ingly. In one of them, the entire conjunction is negated. In the other, just one conjunct is
negated. Brackets help us to keep track of things like the scope of the negation: whether it
applies to the entire conjunction, or just to the first conjunct.

■ Exercises 2.3
A. Symbolize each English sentence in TFL.

1. Simon and his sister went shopping.
2. Melissa gave her dog a biscuit but he didn’t like it.
3. Simon and Melissa did not both go shopping.
4. Bill’s coat was not expensive despite being of good quality.
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2.4 Disjunction

Consider these sentences:

(17) Either Denison will play golf, or he will watch movies.
(18) Either Denison or Ellery will play golf.

We can use the following symbolization key for these sentences (notice that we replace
pronouns with names):

D: Denison will play golf.
E: Ellery will play golf.
M: Denison will watch movies.

Sentence (17) is an ‘either . . . or’ statement, and gets symbolized as ‘(D∨M)’. The con-
nective is called DISJUNCTION. We also say that ‘D’ and ‘M’ are the DISJUNCTS of the
disjunction ‘(D∨M)’.

Sentence (18) is only slightly more complicated. Here ‘or’ occurs between two names
rather than two complete sentences. However, we can paraphrase sentence (18) as ‘Either
Denison will play golf, or Ellery will play golf’ where ‘or’ now connects two complete
sentences. So we can symbolize it as ‘(D∨E)’.

A sentence can be symbolized as (ϕ ∨ψ) if it can be paraphrased in En-
glish as ‘Either ϕ or ψ .’

Sometimes in English, the word ‘or’ excludes the possibility that both disjuncts are true.
This is called an EXCLUSIVE OR. An exclusive or is intended when it says, on a restaurant
menu, ‘Entrees come with either soup or salad’: you may have soup; you may have salad;
but, if you want both soup and salad, then you have to pay extra. At other times, the word
‘or’ allows for the possibility that both disjuncts might be true. This is probably the case
with sentence (18), above: Denison might play golf, or Ellery might, or maybe both will.
Sentence (18) merely says that at least one of them will play golf. This is an INCLUSIVE

OR.
Importantly, the TFL symbol ‘∨’ expresses inclusive or. Whenever you see the English

words ‘either . . . or’ in this book, you can assume that the inclusive sense is intended, and
symbolize such sentences using ‘∨’. When an exclusive sense is intended, we will always
add an explicit ‘but not both’, as in:

(19) The entree will come with either soup or salad, but not both.

Using ‘S1’ for ‘the entree will come with soup’ and ‘S2’ for ‘the entree will come with
salad’, we can symbolize (19) as ‘((S1 ∨ S2)∧¬(S1 ∧ S2))’. So although the TFL symbol
‘∨’ always symbolizes inclusive or, we can symbolize an exclusive or in TFL. We just have
to use a few other TFL symbols in addition to ‘∨’!

There are some futher interesting interactions between disjunction and negation that we
should attend to. Consider the following:

(20) Either Barbara will not get soup, or she will not get salad.
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(21) Barbara will get neither soup nor salad.

Sentence (20) can be paraphrased as: ‘Either it is not the case that Barbara will get soup, or
it is not the case that Barbara will get salad’. Using the following symbolization key:

P: Barbara will get soup.
D: Barbara will get salad.

we can symbolize (20) as (¬P∨¬D). This has the form of a disjunction both disjuncts
of which are negated. Sentence (21) has a different structure. It can be paraphrased as,
‘It is not the case that: either Barbara will get soup or Barbara will get salad’. Since this
negates the entire disjunction, we symbolize sentence (21) as ‘¬(P∨D)’. This differs from
our symbolization of (20), as it should given that the two English sentences mean different
things.

You may have noticed that (20) means the same thing as ‘Barbara will not get both
soup and salad.’ The latter can be symbolized as a negated conjunction, ‘¬(P∧D)’. Since
‘¬(P∧D)’ symbolizes an English sentence that’s equivalent to (20), and (20) is symbolized
as ‘(¬P∨¬D)’, we can conclude that the TFL sentences ‘¬(P∧D)’ and ‘(¬P∨¬D)’ are
themselves equivalent.

Similarly, (21) means the same as ‘Barbara will not get soup and Barbara will not get
salad’, which can be symbolized as a conjunction of two negations ‘(¬P∧¬D)’. So again,
since ‘(¬P∧¬D)’ symbolizes an English sentence that’s equivalent to (21), and (21) is
symbolized as ‘¬(P∨D)’, we can conclude that these two TFL sentences are themselves
equivalent. What we’ve discovered are:

DEMORGAN’S LAWS:

¬(ϕ ∨ψ) is equivalent to (¬ϕ ∧¬ψ)

¬(ϕ ∧ψ) is equivalent to (¬ϕ ∨¬ψ)

These laws are named after Augustus DeMorgan who first explicitly formulated them in the
nineteenth century. These laws will stay with us throughout our study of logic, and we will
see how to prove that these equivalences hold in the next chapter.3

■ Exercises 2.4
A. Symbolize each English sentence in TFL.

1. Socrates was neither tall nor handsome.
2. Liz isn’t flying to both San Francisco and New York today.
3. The package ended up in either Korea or Japan, but not both.
4. The book was both intelligent and funny, but the movie was neither.
5. Li and Virag did not both go to the party.

3It is noteworthy that these equivalences only hold in TFL given that ‘∨’ expresses inclusive disjunction.
The fact that the corresponding English sentences are also intuitively equivalent again shows that English ‘or’
often expresses inclusive disjunction.
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6. Li and Virag both did not go to the party.

B. We symbolized exclusive or, or xor, using ‘∨’, ‘∧’, and ‘¬’. How could you symbolize
an xor using only two connectives? Hint: think about how you might use DeMorgan’s Laws
to eliminate one of the connectives in your symbolization.

2.5 Conditional

Consider these sentences:

(22) If Jean is in Paris, then Jean is in France.
(23) Jean is in France if Jean is in Paris.
(24) Jean is in France only if Jean is in Paris.

Let’s use the following symbolization key:

P: Jean is in Paris.
F : Jean is in France

Sentence (22) is roughly of this form: ‘if P, then F’. We will use the symbol ‘→’ to sym-
bolize the English ‘if. . . , then. . . ’ structure. So we symbolize sentence 23 by ‘(P→ F)’.
The connective is called THE CONDITIONAL. Here, ‘P’ is called the ANTECEDENT of the
conditional ‘(P→ F)’, and ‘F’ is called the CONSEQUENT.

Sentence (23) looks different from (22) since the word ‘if’ occurs in the middle of the
sentence rather than at the beginning. But clearly (23) it is equivalent to (22), so we can
also symbolize it as ‘(P→ F)’. In general, the ‘if’-clause of an English conditional always
introduces the antecedent, whether it occurs first or second in the English sentence, and the
rest of the sentence then functions as the consequent.

Sentence (24) is also a conditional. Since the word ‘if’ appears in the second half of
the sentence, it might be tempting to symbolize this in the same way as sentence (23),
as ‘(P → F)’. But that would be a mistake. My knowledge of geography tells me that
sentence (23) is unproblematically true: there is no way for Jean to be in Paris that doesn’t
involve Jean being in France. But sentence (24) is not so straightforward: were Jean in
Marseilles, Lyon, or Toulouse, Jean would be in France without being in Paris, thereby
rendering sentence (24) false. Since geography alone dictates the truth of sentence (23),
whereas travel plans (say) are needed to know the truth of sentence (24), they must mean
different things, and (24) can’t be symbolized as ‘(P→ F).

The moral is that ‘only if’ means something very different from plain ‘if’. The ‘if’-clause
of a conditional introduces a SUFFICIENT CONDITION: (22) and (23) say that Jean’s being
in Paris is sufficient for his being in France (which is of course true). ‘Only if’, by contrast,
introduces a NECESSARY CONDITION: sentence (24) claims that Jean’s being in Paris is
necessary for his being in France (which is likely false, since there are other ways for
him to be in France). In TFL, the antecedent ϕ of a conditional (ϕ → ψ) always indicates
the sufficient condition, whereas the consequent ψ indicates the the necessary condition.
Since Jean’s being in Paris is claimed as a necessary condition in (24), this sentence is
symbolized as ‘(F→P)’. In general, whereas ‘if’ introduces the antecedent of a conditional
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(the sufficient condition), ‘only if’ introduces the consequent (the necessary condition). So
our symbolization guidelines for conditionals are:

A sentence can be symbolized as (ϕ → ψ) if it can be paraphrased in
English as ‘If ϕ , then ψ’, or as ‘ψ if ϕ’, or as ‘ϕ only if ψ’.

The fact that (22) is symbolized as ‘(P→ F)’ means that this ‘if. . . then’ statement can
also be paraphrased as an ‘only if’ statement: ‘Jean is in Paris only if Jean is in France’.
That’s intuitively correct: since his being in Paris is sufficient for his being in France, it’s
also true that his being in France is necessary for his being in Paris.

This connection between conditionals and necessary and sufficient conditions also means
that our connective ‘→’ can represent other English constructions that don’t involve the
word ‘if’ at all. The following are all ways of saying that the truth of ϕ is sufficient for the
truth of ψ:

▷ If ϕ then ψ

▷ ψ if ϕ

▷ ψ provided that ϕ

▷ ψ whenever ϕ

▷ ψ is the case as long as ϕ is the case

So sentences of this form would all be be symbolized (ϕ → ψ). On the other hand, the
following are ways of saying that the truth of ϕ is necessary for the truth of ψ:

▷ ψ only if ϕ

▷ ψ is contingent on ϕ

▷ For ψ to be the case it is necessary that ϕ be the case

So sentences of this form would all be symbolized as (ψ → ϕ), with the arrow running in
the opposite direction compared to the first set of examples.

One final point: it is important to bear in mind that the connective ‘→’ just says that the
truth of the antecedent is sufficient for the truth of the consequent (or that the truth of the
consequent is necessary for the truth of the antecedent). It says nothing about a causal or
explanatory connection between two events, though English conditionals often carry such a
suggestion. So something of the form (ϕ → ψ) doesn’t mean that ϕ explains ψ , or that the
truth of ϕ caused, or brought about, the truth of ψ . It only represents a logical relationship
between the two. We will look more closely at the discrepancies between English ‘if. . . then’
and the TFL connective ‘→’ in §3.3.

■ Exercises 2.5
A. Symbolize each English sentence in TFL.

1. Liz will go to the party if Megan and Ben both go.
2. If Megan doesn’t go to the party, Liz won’t go either.
3. If Megan goes to the party, then Ben will go if Liz does too.
4. Ben will go only if Liz does.
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5. Russia will attend the summit only if Japan does not.
6. Sam will get a raise as long as he keeps working hard.
7. Sam’s getting a raise is contingent on his not getting fired first.
8. Laura will take biology provided Bea does, but Bea will take it only if Alexis doesn’t.
9. If either Alice or Bob is a spy, then the code has been broken.

10. If neither Alice nor Bob is a spy, then the code remains unbroken.

B. Say whether the following are true or false:

1. My being in Syracuse is sufficient for my being in the United States.
2. Meg’s attending class is sufficient for her to do well on exams.
3. The toaster’s being plugged in is necessary for it to toast bread.
4. Fluffy’s being a cat is necessary for Fluffy’s being a mammal.
5. Being a square is sufficient for something to be a quadrilateral.

2.6 Biconditional

Consider the following sentence:

(25) Bucephalus is a horse if and only if he is a mammal

Let’s use the following symbolization key:

H: Bucephalus is a horse
M: Bucephalus is a mammal

Sentence 25 can be paraphrased as ‘Bucephalus is a horse if he is a mammal, and Bu-
cephalus is a horse only if Bucephalus is a mammal’. This is just the conjunction of two con-
ditionals we already know how to symbolize. So we can symbolize it as ‘((H→M)∧(M→
H))’. We call this a BICONDITIONAL, because it amounts to stating both directions of the
conditional. That is, (25) says (falsely, as it happens) that Bucephalus’ being a mammal is
both necessary and sufficient for his being a horse.

We could treat every biconditional this way, as a conjunction of two conditionals. So, just
as we do not need a new TFL symbol to deal with exclusive or, we do not really need a new
TFL symbol to deal with biconditionals. However, since biconditionals occur a lot in logic
and philosophy, we’ll use the dedicated connective ‘↔’ to symbolize them. We can then
can symbolize sentence 25 with the TFL sentence ‘(H↔M)’.

Since ‘if and only if’ gets used so much in logic and philosophy, it is often abbreviated
with a single, snappy word, ‘iff’. So ‘if’ with only one ‘f’ is the English conditional. But
‘iff’ with two ‘f’s is the English biconditional. Armed with this we can say:

A sentence can be symbolized as (ϕ ↔ ψ) if it can be paraphrased in
English as ‘ϕ if and only if ψ’, that is, ‘ϕ iff ψ’.

Another way to express a biconditional relationship in English is with the words ‘just in
case’, as in:
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(26) The triangle is equilateral just in case all of its sides have the same length.

This says that the triangle’s having sides of the same length is both necessary and suffi-
cient for its being equilateral. If we use ‘E’ for ‘the triangle is equilateral’ and ‘S’ for ‘the
triangle’s sides have the same length’, it can be symbolized as the biconditional ‘(E↔ S)’.

2.7 ‘Unless’

We have now seen all of the connectives of TFL. We can use them together to symbolize
many kinds of sentences. But some cases are harder than others. And a typically nasty case
is the English-language connective ‘unless’:

(27) Unless Alice wears a jacket, she will catch a cold.
(28) Alice will catch a cold unless she wears a jacket.

These two sentences are clearly equivalent. Let’s use the following symbolization key:

J: Alice will wear a jacket.
D: Alice will catch a cold.

Both sentences mean that if Alice does not wear a jacket, then she will catch a cold. So we
could symbolize them as ‘(¬J → D)’. In general, you can think of ‘unless’ as having the
meaning ‘if not’. So sentences of the form ‘Unless ϕ , ψ’ or ‘ψ unless ϕ’ mean ‘If not ϕ ,
then ψ’ or again, ‘ψ if not ϕ’, and can be symbolized as (¬ϕ → ψ).

As we shall see in the next chapter, in TFL ‘(¬J→ D)’ is equivalent to the disjunction
‘(J ∨D)’. So this is another way to symbolize (27) or (28). And that makes some sense:
intuitively they do say that either you will wear a jacket, or you will catch a cold. So we can
use the following guideline:

If a sentence can be paraphrased as ‘Unless ϕ , ψ’ or ‘ψ unless ϕ’, then it
can be symbolized as (¬ϕ → ψ), or simply (ϕ ∨ψ).

One caveat: although ‘Unless’ can be symbolized as a conditional or an inclusive dis-
juntion, ordinary speakers of English often use ‘unless’ to mean something more like the
biconditional, or like exclusive disjunction. Suppose I say: ‘I will go running unless it rains’.
I probably mean that I’ll go running if it doesn’t rain, and also that I’ll go running only if
it doesn’t rain, i.e. what we could put by saying ‘I will go running if and only if it does not
rain’ (a biconditional), or ‘either I will go running or it will rain, but not both’ (an exclusive
disjunction). However, in this book we’ll always use ‘unless’ in the strict sense in which
it can be symbolized using a conditional or an inclusive disjunction. (As it happens, our
guideline here is also the one used on the LSAT.)

■ Exercises 2.7
A. Symbolize each English sentence in TFL.

1. Unless something terrible happens, the team will win the playoffs.
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2. Lua will win the race if and only if both Emily and Bill sit out.
3. Annie will mow the grass just in case her sister does the dishes, provided that there

are dishes to be done.
4. Neither Li nor Simon will go the party unless Grace does.
5. Unless those creatures are men in costumes, they are either chimpanzees or gorillas.

2.8 Symbolizing Whole Arguments

So far we’ve been concerned with symbolizing individual statements. But logic is ultimately
about the analysis of arguments, so we need to be able to symbolize whole arguments as
well. Luckily, as we learned in §1.1, an argument is just a collection of statements, so sym-
bolizing an argument is just a matter of symbolizing each of the statements (the premises
and the conclusion) that comprise the argument.

Take again the simple example from §2.1:

(1) It’s raining outside.
If it’s raining outside, Jenny is miser-
able.
∴ Jenny is miserable.

A
(A→C)
∴ C

The arguments consists of two premises and a conclusion, and involves two atomic sen-
tences. Using ‘A’ for ‘It’s raining outside’ and ‘C’ for ‘Jenny is miserable’, the argument as
a whole gets symbolized as you see on the right. By symbolizing an argument in TFL like
this, we reveal its logical form, specifically its truth-functional logical form.

Although symbolizing an argument just involves symbolizing the individual statements
it consists of, there are some complications to be aware of. Take the following English
argument:

The murder either occurred in the attic or in the basement. Furthermore, if Prof. Plum
was awake, the murder can’t have occurred in the basement or the dining room. So if
the murder didn’t occur in the attic, Prof. Plumb must have been asleep.

There is no ∴ symbol in this argument to indicate the conclusion, so we have to figure out
what the conclusion is from context. In this case it’s pretty clear: the word ‘so’ indicates that
the person presenting the argument regards the last sentence as following from the others,
so it is the conclusion. But this needn’t always be the case: sometimes people present an
argument by stating the conclusion first, and afterwards telling you what the premises are
that demonstrate that conclusion.

Another thing we have to be careful about is correctly identifying the reappearance of the
same atomic sentences in different parts of the argument. Take the following symbolization
key:

A: The murder occurred in the attic.
B: The murder occurred in the basement.
D: The murder occurred in the dining room.
W : Prof. Plum was awake.
S: Prof. Plum was asleep.
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Using this key, our argument would be symbolized as: (A∨B), (W →¬(B∨D)) ∴ (¬A→
S). But as we’ll learn how to show in Chapter 3, this TFL argument is not valid: the con-
clusion (¬A→ S) does not follow from these premises (notice that none of the premises
contains the letter ‘S’). However, we shouldn’t conclude that the English argument must
therefore be invalid too — perhaps we just didn’t symbolize it correctly.

We here used separate atomic TFL sentences to represent the statement ‘Prof. Plumb was
awake’ in the second premise and the statement ‘Prof. Plumb was asleep’ in the conclusion.
But we could instead symbolize the second of these statements as the negation of the first,
that is, use ¬W in place of S. This would now give us the following symbolization: (A∨
B), (W →¬(B∨D)) ∴ (¬A→¬W ). And as we’ll soon be able to show, this TFL argument
now is valid. So this is a better way to represent the logical structure of the original English
argument, since the person giving it presumably meant to draw a conclusion that follows
from the premises. In general, when interpreting an argument — in this class or elsewhere
— it is always a good idea to abide by the PRINCIPLE OF CHARITY:

If an argument has more than one plausible interpretation or symboliza-
tion, but only one of them yields a valid argument, then we should go with
the symbolization on which the argument is valid.

■ Exercises 2.8
A. Symbolize each argument in TFL.

1. If Dorothy plays the piano in the morning, then Roger wakes up cranky. Dorothy
plays piano in the morning unless she is distracted. So if Roger does not wake up
cranky, then Dorothy must be distracted.

2. It will either rain or snow on Tuesday. If it rains, Neville will be sad. If it snows,
Neville will be cold. Therefore, Neville will either be sad or cold on Tuesday.

3. If Zoog remembered to do his chores, then things are clean but not neat. If he forgot,
then things are neat but not clean. Therefore, things are either neat or clean; but not
both.

2.9 The Syntax of TFL

In the course of learning to symbolize English sentences in TFL, we’ve gotten a pretty
good intuitive sense of how to build up complex TFL sentences from atomic ones using our
five connectives. But as we move ahead, it will be necessary for us to be a bit more precise
about the structure of our logical language. Because just as not every string of English words
counts as a grammatical English sentence (e.g. ‘shelf on book red lies’ is just gibberish), so
not every string of symbols counts as grammatical, or well-formed sentence of TFL.

We have seen that there are three kinds of symbols in TFL:

Atomic sentences: A,B,C, . . . ,Z, . . . ,A1,B1,Z1,A2,A25,J375, . . .

Connectives: ¬,∧,∨,→,↔

Brackets: ( , )
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This constitutes the LEXICON of TFL. Now define an EXPRESSION OF TFL to be any
string of symbols of TFL. That is: write down any sequence of symbols from the lexicon of
TFL, in any order, and you have an expression of TFL.

Strings like ‘(A← B)’ or ‘(p∨C)’ or ‘¬(ϕ∧A)’ are not expressions of TFL because they
contain symbols like ‘←’ (leftward arrows) ‘p’ (lowercase letters) and ‘ϕ’ (Greek letters)
that are not even in the Lexicon of TFL. On the other hand, ‘(A∧B)’ is an expression of
TFL, and so are ‘(¬)A→)’ and ‘¬)(∨()∧ (¬¬())((B’. However, whereas the first of these
expressions also counts as a sentence of TFL, the rest are just gibberish. What we want are
some rules to tell us precisely which TFL expressions count as sentences.

Obviously, individual atomic sentences like ‘A’ and ‘G13’ should count as sentences. We
can form further sentences out of these by using the various connectives. Using negation, we
can get ‘¬A’ and ‘¬G13’. Using conjunction, we can get ‘(A∧G13)’, ‘(G13∧A)’, ‘(A∧A)’,
and ‘(G13∧G13)’. We could also apply negation repeatedly to get sentences like ‘¬¬A’ and
‘¬¬¬A’, or apply negation to one of our conjunctions to get sentences like ‘¬(A∧G13)’
and ‘¬(G13 ∧¬G13)’. There are infinitely many possible combinations, even starting with
just these two sentence letters. And of course there are infinitely many sentence letters. So
there is no point in trying to list all of the sentences of TFL one by one.

Instead, we will describe the process by which sentences can be constructed. Consider
negation: given any sentence ϕ of TFL, putting a negation in front of it gives us a sentence
¬ϕ . We can say similar things for each of the other connectives. For instance, if ϕ and ψ

are sentences of TFL, then (ϕ ∧ψ) is a sentence of TFL. (What’s up with the funny Greek
letters, which are not in the lexicon of TFL? We’ll get to that in §2.9 below.)

Providing clauses like this for all of the connectives, we arrive at the following SYNTAX,
or formal definition of what counts as a SENTENCE OF TFL:

THE SYNTAX OF TFL:

1. Every atomic sentence is a sentence.

2. If ϕ is a sentence, then ¬ϕ is a sentence.

3. If ϕ and ψ are sentences, then (ϕ ∧ψ) is a sentence.

4. If ϕ and ψ are sentences, then (ϕ ∨ψ) is a sentence.

5. If ϕ and ψ are sentences, then (ϕ → ψ) is a sentence.

6. If ϕ and ψ are sentences, then (ϕ ↔ ψ) is a sentence.

7. Nothing else is a sentence.

Definitions like this are called recursive. Recursive definitions begin with some list of base
elements (in this case, atomic sentences), and then present ways to generate indefinitely
many more elements by compounding together previously generated elements. We can then
determine if any given TFL expression counts as a sentence by checking whether it can be
generated by applying these recursive rules of syntax.

For example, suppose we want to know whether or not ‘¬¬D’ is a sentence of TFL.
Looking at clause 2 of the definition, we know that ‘¬¬D’ is a sentence if ‘¬D’ is a sen-
tence. So now we need to ask whether or not ‘¬D’ is a sentence. Again looking at clause
2 of the definition, ‘¬D’ is a sentence if ‘D’ is. And ‘D’ is an atomic sentence of TFL, so
we know that ‘D’ is a sentence by the clause 1 of the definition. So by applying the clauses
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of our definition repeatedly, we see that our original sentence ‘¬¬D’ can be generated by
applying the rules of our syntax to atomic sentences, and thus counts as a TFL sentence.

Next, consider a more complex example: ‘¬(P∧¬(¬Q∨R))’. Looking at clause 2 of the
definition, this is a sentence if ‘(P∧¬(¬Q∨R))’ is. And by clause 3 the latter is a sentence
if both ‘P’ and ‘¬(¬Q∨R)’ are sentences. The former is an atomic sentence, and the latter
is a sentence if ‘(¬Q∨R)’ is a sentence. Looking at clause 4, we see this is a sentence if
both ‘¬Q’ and ‘R’ are sentences. And both are! So we’ve shown that the expression we
started with is indeed a sentence.

Notice that negation differs from our other operators. It attaches to a single sentence to
form a new sentence, and is therefore called a UNARY OPERATOR. By contrast, the other
operators all operate on pairs of sentences to form new sentences, and are therefore called
BINARY OPERATORS.

Our syntactic rules tell us that any sentence formed by applying a binary operator to
a pair of sentences must be enclosed by parentheses. For example, when putting ‘S’ and
‘R’ together using a conjunction, the resulting sentence ‘(S∧R)’ must have parentheses
around it. So ‘S∧R’ is not technically a sentence of TFL, but a mere expression. This is
not the case for negation, however! Putting a negation in front of a sentence never requires
adding parentheses. So ‘¬¬D’ and ‘¬(S∧R)’ are well-formed sentences, but ‘(¬(¬(D)))’
or ‘(¬(S∧R))’ are not sentences. (We’ll return to the rationale behind these bracketing rules
in §2.9 below.)

Some Syntactic Notions
Ultimately, every TFL sentence is constructed step-by-step out of atomic sentences using
our syntactic rules. When we are dealing with any complex (i.e. non-atomic) sentence, we
can see that there must be some connective that was introduced last when constructing that
sentence. We call that the MAIN OPERATOR of the sentence:

The MAIN OPERATOR of a complex TFL sentence is the one that was
introduced last in the process of constructing that sentence.

In the case of ‘¬¬D’, the main operator is the very first ‘¬’ sign. In the case of
‘((¬E ∨F)→ ¬G)’, the main operator is ‘→’ because the last step in constructing this
sentence is to connect ‘(¬E ∨F)’ and ‘¬G’ using ‘→’ (and putting brackets around the
result). One can visually represent the process in which a sentence is constructed from its
parts via a SYNTACTIC TREE. For example, the syntactic tree for ‘((¬E ∨F)→¬G)’ looks
like this:

((¬E ∨F)→¬G)

(¬E ∨F)

¬E

¬ E

∨ F

→ ¬G

¬ G
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This shows that ‘((¬E ∨F)→¬G)’ was constructed by connecting ‘(¬E ∨F)’ and ‘¬G’
using ‘→’. And ‘(¬E ∨ F)’ was in turn constructed by connecting ‘¬E’ and ‘F’ using
‘∨’, and ‘¬E’ was constructed by putting ‘¬’ in front of ‘E’, and so on. If we represent
the construction process in terms of a tree structure like this, then the main operator of a
sentence is whichever operator occurs on a branch of its own at the first level below the
sentence as a whole (which again, in this case, is ‘→’).

The syntactic structure of sentences in TFL also allows us to give a formal definition
of the scope of a negation (mentioned in §2.3). The scope of a ‘¬’ in a given sentence is
whatever subsentence of that sentence has ‘¬’ as its main logical operator. For example,
consider the complex TFL sentence:

(¬(R∧B)↔ Q)

This was constructed by putting a biconditional between ‘¬(R∧B)’ and ‘Q’ . So ‘¬(R∧
B)’ is a subsentence of the sentence as a whole. And the main logical operator for this
subsentence is ‘¬’. So the scope of the negation in ‘(¬(R∧B)↔ Q)’ is just ‘¬(R∧B)’.
More generally:

The SCOPE of any connective in a sentence is the subsentence for which
that connective is the main logical operator.

So again in the case of ‘(¬(R∧B)↔Q)’, the scope of ‘↔’ is the sentence as a whole (since
it is the main operator of the whole sentence), and the scope of ‘∧’ is ‘(R∧B)’, since (R∧B)
is the subsentence of which ‘∧’ is the main operator.

Bracketing
As mentioned in §2.3 and §2.9 above, brackets are an important part of the syntax of TFL.
This is because they demarcate the scope of connectives. For example, there is an important
difference between ‘¬(P∧Q)’ and ‘(¬P∧Q)’. In the case of ‘¬(P∧Q)’ the scope of the
negation operator is the whole sentence, that is, it is the main operator of the sentence and it
serves to negate the entire conjunction. In the case of ‘(¬P∧Q)’, the scope of the negation
is just the subsentence ‘¬P’, and the main operator of the sentence as a whole is ‘∧’.

Strictly speaking, therefore, a string like ‘¬P∧Q’ is not a sentence of TFL, but a mere
expression, because it is missing brackets. As things stand, it is not clear where in ‘¬P∧Q’
the brackets are supposed to go, that is, whether it is supposed to be a negated conjunction,
i.e. ‘¬(P∧Q)’, or rather a conjunction with a negated left conjunct, i.e. ‘(¬P∧Q)’. When
working with TFL, however, it will make our lives easier if we are sometimes a little less
strict. So, here are some convenient conventions.

First, we’ll allow ourselves to omit the outermost brackets on a sentence. Thus we allow
ourselves to write ‘Q∧R’ instead of ‘(Q∧R)’. However, we have to put the brackets back
in when we want to embed this sentence into another, larger sentence! So we cannot write
‘P→Q∧R’, but must write P→ (Q∧R)’ instead. With this convention in place, something
like ‘¬P∧Q’ can now be interpreted as missing its outermost parentheses, and thus being a
shorthand for ‘(¬P∧Q)’ rather than ‘¬(P∧Q)’.

Second, it can be a bit painful to stare at long sentences with many nested pairs of brack-
ets. To make things a bit easier on the eyes, we will allow ourselves to use square brackets,
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‘[’ and ‘]’, instead of rounded ones. So there is no logical difference between ‘(P∨Q)’ and
‘[P∨Q]’, for example. Combining this convention with the first one, we can rewrite the
unwieldy sentence:

(((H→ I)∨ (I→ H))∧ (J∨K))

more simply as follows: [
(H→ I)∨ (I→ H)

]
∧ (J∨K)

The scope of each connective is now much more visually apparent.

Metalanguage and Metavariables
Our recursive definition of TFL sentences included clauses like the following:

3. If ϕ and ψ are sentences, then (ϕ ∧ψ) is a sentence.

But notice that ‘(ϕ∧ψ)’ is not a sentence of TFL. In fact, it isn’t even an expression of TFL!
After all, it includes Greek letters, and these are not among the symbols that constitute
the the lexicon of TFL. Atomic TFL sentences are just ordinary uppercase roman letters
(possibly subscripted) like ‘A’ or ‘B’ or ‘S21’, not Greek letters. So what’s going on in our
recursive clauses?

The answer is that in these clauses, we are using Greek letters as variables that “range
over” arbitrary expressions of TFL. Consider how, in math, you might explain to someone
that if m and n are any two integers greater than 0, then m+ n > m. In this case we are
using ‘m’ and ‘n’ as variables that range over arbitrary positive integers, and saying that
m+n > m holds no matter which positive integers m and n are.

In the same way, we are here using Greek letters as variables, except that we are using
them as variables that range over arbitrary expressions in the language of TFL (rather than
over integers, say). The language of TFL has been the object of our study for the past several
sections, and we therefore call it the OBJECT LANGUAGE. But we have been conducting
our discussion of TFL in English, so English is our METALANGUAGE: it is the language in
which we talk about the object language.4 For this reason, variables like ‘ϕ’ and ‘ψ’ are
called METAVARIABLES: they form part of our metalanguage, English, and they range over
arbitrary expressions in our object language, TFL. But again, these metavariables are only
part of our metalanguage, and not themselves included in the object language TFL.

Greek letters ϕ , ψ , χ etc. are METAVARIABLES in our METALANGUAGE,
used to talk about arbitrary expressions of TFL. Roman letters A,B,C . . .
etc. are atomic sentences of our OBJECT LANGUAGE TFL .

So what clause 3 in our definition says is that if ϕ and ψ are any arbitrary sentences of
TFL, then the result of writing whatever ϕ is, followed by ‘∧’, followed by whatever ψ is,
and enclosing the result in parentheses, produces a sentence of TFL.5 Whenever you see a
symbol string that mixes metavariables with symbols from TFL, as in our recursive clauses,
this is how you should read it. For example, if ϕ is the TFL sentence ‘¬D’ and ψ is the TFL
sentence ‘(S→ T )’, then clause 3 tells us that ‘(¬D∧ (S→ T ))’ is a sentence of TFL.

4Of course these notions aren’t fixed. If we had been discussing the syntax of Korean, say, rather than TFL,
then our metalanguage would still have been English, but our object language would have been Korean.

5Logicians have developed the device of corner quotation or selective quotation to explicitly mark this, see
the SEP entry on Quotation.

https://plato.stanford.edu/entries/quotation/
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■ Exercises 2.9
A. Which of the following are sentences of TFL? If it’s not, how could you rewrite it to
make it a grammatical sentence?

1. (A∨ψ)
2. R∧¬S2
3. ¬(P→ Q)
4. ((¬P)∧Q)
5. (¬P→ Q∨R)
6. (R∨ (P← Q))
7. S→ R→ T
8. (A∨B∧C∨D)
9. ¬¬¬¬F

10. ¬¬¬(¬F)
11. ¬∧S
12. ((A→ (A∧¬F))∨ (D↔ E))
13. (A∧ (B∧ ((C∧D)∧E)))

B. What is the main operator in each of the following?

1. ¬(P→ Q)
2. (¬P→ Q)
3. ((A∧B)∨¬C)
4. (A∧ (B∨¬C))
5. (¬(P∧R)→ (S→ (Q∨V )))
6. ¬((P∧R)→ (S→ (Q∨V )))
7. ¬(A→¬(¬C↔ B))
8. ¬A→¬(¬C↔ B)
9. (A∧ (B∨ ((C∨D)∧E)))

10.
[
(H→ I)∨ (I→ H)

]
∧ (J∨K)

C. Are there any TFL sentences TFL that contain no atomic sentences? Does any TFL
sentence contain more binary connectives than atomic sentences? Explain your answers.

D. Here are some more complex English sentences. Symbolize each and say what the main
operator is:

1. If Lisa got paid, she will go to the mall only if she has enough money for a shirt or a
phone case or a pair of shoes.

2. Weiting will win the race if either Lily or Sam drop out; otherwise, she will lose.
3. Neither Sweden nor Ireland will attend the summit if Russia and China don’t both

attend.
4. Either Sweden or Ireland will not attend the summit if Russia and China both don’t

attend.
5. Sarah isn’t going to the party unless Richard and Pam are both going, and Tim is

going iff neither Pam nor Quincy are going.
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6. If Canada subsidizes exports, then the US will raise tariffs if Mexico opens new fac-
tories.

7. Hanyu will go hiking as long as Liam comes too, unless the weather turns bad — in
that case she’ll go on a bike ride.

8. If evolutionary biology is correct, higher life forms arose by chance, and if that’s so,
then there isn’t any design or divine intervention in nature.
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We ended the last chapter by looking at the SYNTAX, or grammar, for the language of TFL.
In this chapter, we’ll be concerned with the SEMANTICS, or meaning, of TFL sentences.
More specifically, we’re going to look at the meanings of our five TFL connectives, and see
how the meaning of a complex TFL sentence is determined by the connectives it contains.
Once we’ve done that, we can use our semantics to give a precise definition of various
important logical notions, like validity.

3.1 Meanings for TFL Connectives

Negation Let’s begin with negation. The meaning of the TFL connective ‘¬’ should
roughly resemble that of the English word ‘not’. But what does ‘not’ mean? This might
seem like a baffling question. What are meanings, anyhow?

To make the issue more tractable, let’s ask a simpler question: if you put ‘not’ into a
sentence, what does that do to the truth-value of the sentence? Take a true sentence, like
‘Frida Kahlo was a painter’. If you add a ‘not’ into it, you get the false sentence ‘Frida
Kahlo was not a painter’. And similarly, if you take a false sentence and negate it, you get a
true sentence.

So we can characterize the meaning of the TFL connective ‘¬’ as a mapping between
truth values: given something true, it returns something false, and given something false, it
returns something true. We’ll abbreviate ‘True’ with ‘T’ and ‘False’ with ‘F’. We can then
represent the meaning of the TFL connective ‘¬’ via the following characteristic truth table
for negation:

ϕ ¬ϕ

T F
F T

What this says is that for any TFL sentence ϕ: if ϕ is true, then ¬ϕ is false, and if ϕ is false,
then ¬ϕ is true.

Conjunction A similar line of thought goes for conjunction. If you take two true sen-
tences, and put an ‘and’ between them, the conjunction you’ve formed is true. On the other
hand, if even one of the two conjoined sentences is false, the entire conjunction is false. So
the characteristic truth table for conjunction looks like this:

30
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ϕ ψ (ϕ ∧ψ)

T T T
T F F
F T F
F F F

Note that conjunction is symmetrical. The truth value for (ϕ ∧ψ) is always the same as the
truth value for (ψ ∧ϕ).

Disjunction Recall that ‘∨’ represents inclusive or. So, for any sentences ϕ and ψ , (ϕ ∨
ψ) is true iff at least one of ϕ and ψ is true. This gives us the following characteristic truth
table for disjunction:

ϕ ψ (ϕ ∨ψ)

T T T
T F T
F T T
F F F

Like conjunction, disjunction is symmetrical: ‘(ϕ ∨ψ)’ always has the same truth value as
‘(ψ ∨ϕ)’.

As we saw in §2.4, the English construction ‘either . . . or’ is sometimes used to express
exclusive disjunction, which “excludes” the possibility of both disjuncts’ being true. If we
liked, we could expand TFL by introducing a new connective ⊕ (sometimes called XOR)
with the following characteristic truth table, which differs from table for ∨ in the first row,
the case where ϕ and ψ are both true:

ϕ ψ (ϕ⊕ψ)

T T F
T F T
F T T
F F F

However, as we discussed, we don’t need to (and won’t) go this route, since the effect of
the exclusive (ϕ ⊕ψ) can be achieved using the TFL connectives we already have, via
(ϕ ∨ψ)∧¬(ϕ ∧ψ), i.e. by saying that one of ϕ or ψ is true, but not both.

Conditional Conditionals are considerably more contentious. In fact, we might as well
be up front about it: they are a mess. We’ll simply stipulate that, in TFL, (ϕ → ψ) is false
if ϕ is true and ψ is false, but is true in all other circumstances. This gives us the following
characteristic truth table for the conditional:

ϕ ψ (ϕ → ψ)

T T T
T F F
F T T
F F T
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Notice that the conditional is asymmetrical: (ϕ→ ψ) and (ψ→ ϕ) need not have the same
truth value. For example, if ϕ is true and ψ false, then (ϕ→ψ) is false but (ψ→ ϕ) is true.

You can perhaps already see that this is a controversial way to symbolize English ‘if
. . . then’ constructions. The above truth table tells us that any TFL conditional with a false
antecedent is true (and similarly, any TFL conditional with a true consequent is true). But
it’s far from clear that any English conditional whose antecedent turns out to be false is
therefore automatically true. This is known as “the paradox of material implication.” In the
case of conditionals, there in other words isn’t just a worry about TFL bypassing certain
subtleties of meaning, but of missing out on the meaning of the corresponding English
expression altogether. We’ll look at some of these issues in §3.3 below.

Biconditional Since a biconditional is the same as the conjunction of two conditionals
running in either directions, (ϕ ↔ ψ) is true iff both (ϕ → ψ) and (ψ → ϕ) are true. This
gives us the following table:

ϕ ψ (ϕ ↔ ψ)

T T T
T F F
F T F
F F T

An easy way to remember this is that a biconditional is true when both sides have the same
truth value, and false when the two sides have different truth values. The biconditional is
therefore symmetrical. It’s truth table is in effect the opposite of exclusive disjunction. As
we’ll soon be able to show, this truth table is indeed the same as the one we would get for
(ϕ → ψ)∧ (ψ → ϕ).

3.2 Truth-Functionality

The fact that we can give characteristic truth tables like these for our TFL connectives means
that they are truth-functional:

A connective is TRUTH-FUNCTIONAL iff the truth value of a sentence with
that connective as its main logical operator is uniquely determined by the
truth value(s) of the constituent sentence(s).

Indeed, this is what gives TFL its name: truth-functional logic.
Many languages have connectives that are not truth-functional. In English, for exam-

ple, we can form a new sentence from any simpler sentence by prefixing it with the unary
connective ‘It is necessarily the case that. . . ’. The truth value of this new sentence is not de-
termined solely by the truth value of the original sentence. For consider two true sentences:

1. 2+2 = 4
2. Shostakovich wrote fifteen string quartets

Whereas the sentence ‘It is necessarily the case that 2+ 2 = 4’ is true, the sentence ‘It is
necessarily the case that Shostakovich wrote fifteen string quartets’ is not true. If he had
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died earlier or later, he might have written fewer or more quartets than he in fact did. So
the truth value of a sentence formed using the connective ‘It is necessarily the case that. . . ’
is not determined by the truth value of the sentence we attach the connective to. So this
connective is not truth-functional. TFL cannot represent connectives like these; it can only
represent truth-functional connectives like e.g. ‘It is not the case that . . . ’ or ‘. . . and . . . ’.

Since TFL’s connectives are all truth-functional, we have to ignore everything except the
truth-functional aspects of English when symbolizing English sentences or arguments into
TFL. A lot is inevitably lost in the process. There are subtleties to our ordinary claims that
far outstrip their mere truth values: sarcasm, poetry, snide implicature, emphasis. These are
all important parts of everyday discourse, but none of it is retained in TFL.

For example, as already remarked in in §2.3, TFL cannot capture the subtle differences
between the following English sentences:

1. Adam is energetic and Adam is not athletic.
2. Although Adam is energetic, he is not athletic.
3. Despite being energetic, Adam is not athletic.
4. Adam is energetic, albeit not athletic.

They all get symbolized with the same TFL sentence, perhaps ‘(E ∧¬A)’. Similarly, in
symbolizing ‘Adam is energetic’ as ‘E’, we are ignoring all aspects of its meaning except
its truth value.

This is why we talk of symbolizing English sentences. Some logic textbooks talk about
translating English sentences into TFL. But a good translation should preserve more than
mere truth values and truth-functional aspects of meaning. So we can’t really translate
English into TFL, properly speaking.

3.3 Conditionals in TFL and English

When we introduced the truth table for ‘→’, we didn’t provide any justification for it. In
fact, we noticed that it seems problematic as a symbolization of English ‘if . . . then’. But
there are some things to be said in favor of the truth table we provided.

First, the TFL conditional has some attractive logical features given our truth table. The
following all seem correct for English ‘if . . . then’ statements:

• Arguments of the form ‘If ϕ then ψ; ϕ; therefore ψ’ are valid. (This form of argument
is called modus ponens.)

• Arguments of the form ‘If ϕ then ψ; ψ; therefore ϕ’ are not valid. (This is called the
fallacy of affirming the consequent.)

• Statements of the form ‘If ϕ , then ϕ’ are necessarily true.

As we will see once we define validity and other logical notions in TFL, the same holds
for the corresponding TFL symbolizations using → in place of ‘if . . . then’: arguments of
the form (ϕ → ψ),ϕ ∴ ψ will be valid in TFL, ones of the form (ϕ → ψ),ψ ∴ ϕ will not
be valid (at least if ϕ and ψ are atomic sentences), and any sentence of the form (ϕ → ϕ)
is a logical necessity (or “tautology”) in TFL. And importantly, out of the sixteen possible
binary truth functions, the one we have assigned to ‘→’ is the only one that has all these
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logical properties! So if we have to pick a truth-functional connective to symbolize English
‘if . . . then’, then ‘→’ is the best choice among the sixteen available options.1

Second, there’s an argument to suggest that the truth table we’ve given for ‘→’ captures
at least certain uses of English ‘if . . . then’.2 Suppose Lara has drawn several shapes on a
piece of paper, and colored some of them grey. I have not seen them, but I claim:

If any shape is grey, then it is also circular.

As it happens, Lara has drawn the following:

A B C

In this case, my general conditional claim is true. And this in turn means that each of its
instances must be true:

• If A is grey, then it is circular (true antecedent, true consequent)
• If B is grey, then it is circular (false antecedent, true consequent)
• If C is grey, then it is circular (false antecedent, false consequent)

However, if Lara had drawn the following:

A B C

then my claim would have been false, because it would then have had a false instance:

• If C is grey, then it is a circular (true antecedent, false consequent)

Notice that this distribution of truth values exactly matches that in our truth-table for ‘→’:
the only false conditional is the one with a true antecedent but a false consequent. So this
suggests that the truth values of at least some English ‘if . . . then’ statements match those
predicted by our truth table.

At the same time, it’s clear that there are other uses of ‘if . . . then’ in English that aren’t
adequately symbolized using ‘→’. Consider the following two sentences:

(1) If Hillary Clinton had won the 2016 US election, then she would have been the first
female president of the US.

(2) If Hillary Clinton had won the 2016 US election, then she would have turned into a
helium balloon and floated away into the sky.

Intuitively, sentence 1 is true and sentence 2 is false. But both have false antecedents and
false consequents. (Hillary did not win; she did not become the first female president of

1I owe the this observation to Branden Fitelson.
2Versions of this argument are given by Dorothy Edgington (2014), ‘Conditionals’, in the Stanford Ency-

clopedia of Philosophy (http://plato.stanford.edu/entries/conditionals/) and Warren Goldfarb
(2003), in his textbook Deductive Logic.

http://plato.stanford.edu/entries/conditionals/
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the US; and she of course did not turn into a helium balloon.) So our truth table would
incorrectly count both sentence true.

These are examples of subjunctive conditionals, because they are in the subjunctive mood
(that is, they involve words like ‘had’ and ‘would’). They ask us to imagine something con-
trary to fact— a world in which Hillary won the 2016 election — and then ask us to evaluate
what would have happened in that case. What we’ve seen is that subjunctive conditionals
are not adequately symbolized using ‘→’. In fact, we’ve seen that subjunctive conditionals
aren’t even truth functional! After all, (1) and (2) have antecedents and consequents with the
same truth values (all false), but the two conditionals themselves have different truth values.
Since subjunctive conditionals aren’t truth-functional, there is no hope of symbolizing them
in the truth-functional language of TFL.

Still, for the reasons given earlier, ‘→’ is the best candidate we have for symbolizing at
least certain uses of English ‘if . . . then’. We’ll therefore continue to symbolize them this
way, while remaining mindful of the simplification involved.

3.4 Complete Truth Tables

We’ve seen what the characteristic truth tables for the five TFL connectives are. Our next
step is to use these truth tables to build up truth tables for complex TFL sentences that
contain multiple connectives. To construct a truth table for a complex sentence like ‘(H ∧
I)→ H’ we have to start with truth-values for the atomic sentences, and then calculate the
truth value of the complex sentence.

So far, we’ve used symbolization keys to assign truth values to TFL sentences. For exam-
ple, we might say that the TFL sentence ‘B’ is to symbolize ‘Big Ben is in London’. Since
Big Ben is in London, this symbolization would make ‘B’ true. But we can also assign truth
values directly. We could simply stipulate that ‘B’ is to be true, or stipulate that it is to be
false. Such stipulations are called valuations:

A VALUATION is any assignment of truth values to particular atomic sen-
tences of TFL.

To construct the COMPLETE TRUTH TABLE for a complex TFL sentence, we will have to
calculate its truth value on every possible valuation of the atomic sentences it contains.

Let’s look at an example. Take the sentence ‘(H ∧ I)→H’. There are four possible ways
to assign True and False to the atomic sentence ‘H’ and ‘I’—four possible valuations. We
can represent these as follows:

H I (H∧I)→H
T T
T F
F T
F F

To calculate the truth value of the entire sentence ‘(H ∧ I)→ H’, we first copy the truth
values for the atomic sentences and write them underneath the letters in the sentence:
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H I (H∧I)→H
T T T T T
T F T F T
F T F T F
F F F F F

Next we have to consider the subsentence ‘(H ∧ I)’. This is a conjunction, and the charac-
teristic truth table for conjunction tells us that a conjunction is true iff both conjuncts are
true. Since ‘H’ and ‘I’ are both true on (and only on) the first line of the truth table, the
conjunction ‘(H ∧ I)’ is true on the first row of the table and false on the rest:

H I (H∧I)→H
T T T T T T
T F T F F T
F T F F T F
F F F F F F

Notice how we’ve recorded the truth value for the subsentence ‘(H∧ I)’ on each row under-
neath its main operator, ‘∧’.

Now, our TFL sentence as a whole is a conditional, ϕ → ψ , with ‘(H ∧ I)’ as ϕ and ‘H’
as ψ . So to determine the truth-value of the whole conditional, we have to look at the truth
values of ‘(H ∧ I)’ and ‘H’ on each row. On the second row, for example, ‘(H ∧ I)’ is false
and ‘H’ is true. Since a conditional is true when the antecedent is false, we write a ‘T’ in the
second row underneath the conditional symbol. We continue for the other three rows and
get this:

H I (H∧I)→H
T T T T T
T F F T T
F T F T F
F F F T F

The conditional is the main logical operator of this sentence. The column of ‘T’s underneath
‘→’ therefore tells us the truth value for the sentence as a whole on each of the four possible
valuations of its atomic constituents ‘H’ and ‘I’. What the table shows is that ‘(H ∧ I)→
H’ is true regardless of the truth values of ‘H’ and ‘I’. They can be true or false in any
combination, and the complex sentence still comes out true. Since we have considered all
four possible valuations, this means that ‘(H ∧ I)→ H’ is true on every valuation.

In this example, I erased some ‘T’s and ‘F’s as we went along to make things more
readable. When actually writing truth tables on paper, however, it is impractical to erase
whole columns or rewrite the whole table for every step. Although it is more crowded, the
complete truth table with no columns erased looks like this:

H I (H∧I)→H
T T T T T T T
T F T F F T T
F T F F T T F
F F F F F T F
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Most of the columns underneath the sentence are only there for bookkeeping purposes.
The column that matters most is the column underneath the main logical operator for the
sentence, since this tells you the truth value of the entire sentence. I have emphasized this
column by putting it in bold. When you work through truth tables yourself, you should
similarly emphasize the column under the main operator (perhaps by highlighting it or
circling it).

As you can see from this example, a complete truth table has a row for every possible
assignment of True and False to the relevant atomic sentences. Each of these rows represents
a valuation. The number of rows depends on the number of different atomic sentences
involved. A sentence that contains only one atomic sentence requires only two rows, as in
the characteristic truth table for negation. This is true even if the same letter is repeated
many times, as in the sentence ‘[(C ↔ C)→ C]∧¬(C → C)’. The complete truth table
requires only two row because there are only two possibilities: ‘C’ can be true or it can be
false. The truth table for this sentence looks like this:

C (( C ↔ C )→ C ) ∧ ¬ ( C → C )
T T T T T T F F T T T
F F T F F F F F F T F

Looking at the column underneath the main logical operator, we see that the sentence is
false on both rows, i.e. on every valuation, no matter whether ‘C’ is true or false.

There will be four rows in the complete truth table for a sentence containing two atomic
sentences, like ‘(H∧ I)→H’. And there will be eight rows in the complete truth table for a
sentence containing three atomic sentences, e.g.:

M N P M ∧ (N∨P)
T T T T T T T T
T T F T T T T F
T F T T T F T T
T F F T F F F F
F T T F F T T T
F T F F F T T F
F F T F F F T T
F F F F F F F F

So truth tables grow quickly! Four atomic sentences would require 16 rows, five atomic
sentences require 32 rows, six atomic sentences require 64 rows, and so on.

A complete truth table for a sentence with n atomic sentences must have
2n rows, representing the 2n possible valuations.

In order to fill in the columns under the atomic sentences, begin with the right-most
atomic sentence (‘P’ in the table above) and alternate between ‘T’ and ‘F’. In the next
column to the left (the one under ‘N’ in our table), write two ‘T’s followed by two ‘F’s, and
repeat. For the third atomic sentence (‘M’ in our table), write four ‘T’s followed by four
‘F’s. This yields an eight line truth table like the one above. For a 16 line truth table, the
next column of atomic sentences should have eight ‘T’s followed by eight ‘F’s. For a 32
line table, the next column would have 16 ‘T’s followed by 16 ‘F’s. And so on. In general,
you should construct your truth tables according to the following rules:
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1. Write down the complex sentence you are working with, and to its left list the atomic
sentences it contains in alphabetical order.

2. Determine how many rows your table will require given how many atomic sentences
are involved. Again, for n atomic sentences you need 2n rows.

3. Fill in the truth values for each atomic sentence according to the pattern described
above. The column under the right-most atomic sentence will follow the pattern T F
T F T F, the next column to the left will have the pattern T T F F T T F F, the column
to the left of that the pattern T T T T F F F F, and so on.

4. Then calculate the truth value for the complex sentence as a whole on every row of
the truth table (i.e. on every possible valuation). When you’re done, remember to
highlight or circle the column under the sentences’s main logical operator.

These rules give us a canonical format for truth tables, which makes it easier to compare
(and grade) truth tables written by different people.

■ Exercises 3.4
A. Construct complete truth tables in canonical format (i.e. by following the rules we gave)
for each of the following:

1. A→ A
2. C→¬C
3. A→¬(B ∧ ¬A)
4. (P→ Q)∨ (Q→ P)
5. (B→ (C∧A))∨ (C∧¬A)
6. (A↔ B)↔¬(A↔¬B)
7. (A→ B)∨ (B→ A)
8. (A∧B)→ (B∨A)
9. ¬(A∨B)↔ (¬A∧¬B)

10.
[
(A∧B)∧¬(A∧B)

]
∧C

11. [(A∧B)∧C]→ B

B. Show that ‘((A∨B)∧¬(A∧B))’ has a truth table that matches that for exclusive dis-
junction given in §3.1 above.

3.5 Semantic Concepts

Now that we know how to construct complete truth tables for complex sentences, we can
define some important semantic concepts and see how to use truth tables to test whether
they apply. In §1.2, we looked at the notions of necessary truth and necessary falsity. Both
notions have surrogates in TFL. We’ll start with a surrogate for necessary truth.
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A sentence ϕ is a TF TAUTOLOGY iff it is true on every valuation.

That is, a TFL sentence is a TF tautology if it is true on every row of its complete truth table,
since rows represent valuations. If you look back at the truth table for ‘(H ∧ I)→ H’ from
§3.4 you’ll see that it’s a tautology. Other tautologies include sentences of the form (ϕ→ϕ)
and ones of the form (ϕ ∨¬ϕ); the latter is called the LAW OF EXCLUDED MIDDLE.

Notice that this is only a surrogate for necessary truth. There are some necessary truths
that we cannot adequately symbolize in TFL. For example, ‘2+ 2 = 4’ and ‘Every city
either is or is not in France’ are both necessary truths, but if if we symbolize them in TFL,
the best we can offer is an atomic sentence, and no atomic sentence is a tautology. Still,
if we can adequately symbolize some English sentence using a TFL sentence which is a
tautology, then that English sentence expresses a necessary truth.

We have a similar surrogate for necessary falsity:

A sentence ϕ is a TF CONTRADICTION iff it is false on every valuation.

A sentence is a TF contradiction if it is false on every line of its complete truth table. The
truth table for ‘[(C↔C)→C]∧¬(C→C)’ we constructed in §3.4 shows that this sentence
is a contradiction. Sentences of the form (ϕ ∧¬ϕ) or ¬(ϕ → ϕ) are other examples of
contradictions. Notice that the negation of any tautology is a contradiction. Lastly, we have
a surrogate for contingency:

A sentence ϕ is TF CONTINGENT iff it is neither a tautology nor a con-
tradiction, i.e. if it is true on at least one valuation and false on at least
one.

These notions all apply to single sentences of TFL. Another useful notion—which we’ve
occasionally already made use of—is that of equivalence. This is a property that applies to
pairs of sentences of TFL:

ϕ and ψ are TF EQUIVALENT iff they have the same truth value on every
valuation.

Notice that by this definition, any two tautologies, and any two contradictions, are equiv-
alent. Equivalence is more interesting when we find pairs of contingent sentences that are
equivalent. For example, we’ve observed that a biconditional like ‘(A↔ B)’ is equivalent
to a conjunction of two conditionals, ‘((A→ B)∧ (B→ A))’. Similarly, since (ϕ → ψ) is
true if ϕ is true or if ψ is false (and false otherwise), TFL conditionals are equivalent to
disjunctions of the form (¬ϕ ∨ψ). DEMORGAN’S LAWS, which we looked at in 2.4, are
another example of equivalences.

Again, we can test for TF equivalence using truth tables. Consider the sentences ‘¬(P∨
Q)’ and ‘¬P∧¬Q’. To find out whether they’re TF equivalent, we construct JOINT TRUTH

TABLE that includes both sentences at once:

P Q ¬ (P∨Q) ¬P ∧ ¬Q
T T F T T T F T F F T
T F F T T F F T F T F
F T F F T T T F F F T
F F T F F F T F T T F
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Joint truth tables like these are constructed by listing to the left (in alphabetical order) all
the atomic sentences that occur in any of the sentences being compared. We then include
two separate sections in the table, one for each sentence, and calculate the truth value of
each sentence in every row, i.e. on every valuation.

Looking at the columns under the main operators of the two sentences (negation for the
first sentence, conjunction for the second) we see that both are false on the first three rows
and true on the last row. Since they match on every row, they have the same truth value on
every valuation, and are therefore TF equivalent. This pair of sentences is an instance of one
of DeMorgan’s Laws, so the table shows that the law does indeed hold in TFL.

Another notion that applies to pairs of sentences is the following:

ϕ and ψ are TF CONTRADICTORY iff they have opposite truth values on
every valuation.

We can again test for this property by drawing a joint truth table for the two sentences to
be compared, and checking to see that the truth values listed underneath their main con-
nectives are different in every row of the table. It’s important not to confuse the notion of
two sentences being contradictory with the notion of a sentence’s being a contradiction: the
former is a property of pairs of sentences, the latter a property of a single sentence. But the
two notions are connected (as the names suggest): if ϕ and ψ are contradictory, then their
conjunction (ϕ ∧ψ) is a contradiction.

Next, here is a notion that applies to arbitrarily large collections of sentences:

ϕ1, . . . ,ϕn are JOINTLY TF CONSISTENT iff there is at least one valuation
which makes them all true.

Collections of sentences are also said to be JOINTLY TF INCONSISTENT iff they are not TF
consistent, i.e. iff there is no valuation on which they are all true. Again, it is easy to test for
joint TF consistency (and inconsistency) using joint truth tables:

P Q P ∧ Q P ∨ Q P → Q
T T T T T T T T T T T
T F T F F T T F T F F
F T F F T F T T F T T
F F F F F F F F F T F

We can see from this that ‘P∧Q’, ‘P∨Q’, and ‘P→ Q’ are consistent, because there is a
row in their joint table on which they are all true, namely the first.

■ Exercises 3.5
A. Determine if each of the following is a tautology, a contradiction, or contingent:

1. (S→ R)∧ (S∧¬R)
2. ((E→ F)→ F)→ E
3. P→ (P→ P)
4. (P→ P)→ P
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5. ¬(A∨B)↔ (¬A∧¬B)

B. Determine if the following are equivalent, contradictory, consistent, or inconsistent:

1. ‘¬(A∧B)’ and ‘(¬A∨¬B)’.
2. ‘(F ∧M)’ and ‘¬(F ∨M)’
3. ‘(R∨¬S)’ and ‘(S∧R)’
4. ‘(A∨B)∧¬(A∧B)’ and ‘¬(A↔ B)’

C. Answer the following:

1. If ϕ is a tautology, must (ϕ ∨ψ) be a tautology?
2. If ϕ is a contradiction, must (ϕ ∨ψ) be a contradiction?
3. If ϕ is a tautology, must (ϕ ∧ψ) be a tautology?
4. If ϕ is contingent, must (ϕ ∧ψ) be contingent?
5. If ϕ is a tautology, must (ψ → ϕ) be a tautology?
6. If ϕ and ψ are both contingent, must (ϕ ∧ψ) be contingent?
7. If ϕ and ψ are equivalent, must they be consistent?
8. If ϕ and ψ are inconsistent, must they be contradictory?
9. If ϕ and ψ are contradictory, must they be inconsistent?

10. If ϕ and ψ are equivalent, what property does (ϕ → ψ) have?
11. If ϕ and ψ are contradictory, what property does (ϕ ↔ ψ) have?

3.6 Validity in TFL

We’ve defined various important logical concepts using the notion of a valuation. But we
have yet to discuss our most important logical concept, that of validity. Recall that in §1.1
we said that an argument is valid iff it’s impossible for the premises to be true and the
conclusion false. In TFL, we can spell out this concept of impossibility using our notion of
a valuation, and define validity for TFL as follows:

An argument ϕ1, . . . ,ϕn ∴ ψ is TF VALID iff no valuation makes all the
premises ϕ1, . . . ,ϕn true but the conclusion ψ false.

Instead of saying that the argument ϕ1 . . .ϕn ∴ ψ is valid, we can also say that the
premises ϕ1 . . .ϕn entail the conclusion ψ:

ϕ1, . . . ,ϕn TF ENTAIL ψ iff no valuation makes all of ϕ1, . . . ,ϕn true and
ψ false.

We can again test for TF entailment, or validity, with joint truth tables. To test whether
‘¬L→ (J∨L)’ and ‘¬L’ TF entail ‘J’ we construct the following joint truth table:

J L ¬L→(J∨L) ¬ L J
T T F T T T T T F T T
T F T F T T T F T F T
F T F T T F T T F T F
F F T F F F F F T F F
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The only row on which both ‘¬L→ (J ∨L)’ and ‘¬L’ are true is the second row. But that
is a row on which ‘J’ is also true! So there is no valuation that makes both ‘¬L→ (J∨L)’
and ‘¬L’ true and ‘J’ false, meaning that ‘¬L→ (J ∨L)’ and ‘¬L’ entail ‘J’, i.e. that the
argument from those premises to the conclusion ‘J’ is valid.

Because TF entailment is such an important concept, we’ll introduce some new notation
in connection with it. Rather than saying that the sentences ϕ1, . . . ,ϕn TF entail ψ , we will
abbreviate this by writing:

ϕ1, . . . ,ϕn ⊨ ψ

The symbol ‘⊨’ is known as the double-turnstile, since it looks like a turnstile with two
horizontal beams.

There is no limit on the number of sentences that can be mentioned before the symbol
‘⊨’. Indeed, we can even consider the limiting case where none are mentioned:

⊨ ψ

This says that there is no valuation which makes all the sentences mentioned on the left side
of ‘⊨’ true while making ψ false. Since no sentences are mentioned on the left side of ‘⊨’ in
this case, this just means that there is no valuation which makes ψ false. But that just means
that ψ is a tautology! So writing ⊨ψ gives us a short way to say that ψ is a tautology.

Sometimes we will want to deny that a TF entailment holds. We will write:

ϕ1, . . . ,ϕn ⊭ ψ

to say that ϕ1, . . . ,ϕn do not TF entail ψ , i.e. to say that there does exist a valuation that
makes all of ϕ1, . . . ,ϕn true but ψ false. Similarly ⊭ ψ means that ψ is not a tautology, i.e.
that there exists a valuation that makes ψ false.

Lastly, we can abbreviate the claim that ϕ and ψ are equivalent as follows:

ϕ ⊨⊨ ψ

This encapsulates the idea that ϕ and ψ are equivalent iff each entails the other. That makes
sense: if ϕ ⊨ ψ then there is no valuation that makes ϕ true but ψ false, and if ψ ⊨ ϕ

then there is no valuation that makes ψ true but ϕ false. Putting it together, this means that
there’s no valuation on which ϕ and ψ have different truth values, meaning that ϕ and ψ

are equivalent. Similarly reasoning holds the other direction, from equivalence to mutual
entailment.

It’s important to be clear that ‘⊨’ is not a symbol in the language of TFL. Rather, it is
a symbol of our metalanguage (recall the difference between object language and meta-
language from §2.9). The following is a claim in our metalanguage, not in the language
TFL:

• P,P→ Q ⊨ Q

This is shorthand for the following metalinguistic claim:

• There is no valuation that makes ‘P’ and ‘P→ Q’ true but ‘Q’ false
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For this reason it is also important not to confuse the symbols ‘→’ and ‘⊨’. The condi-
tional ‘→’ is a symbol in our object language, TFL. The TFL sentence ‘P→ Q’ just says
that it’s not the case that ‘P’ is true and ‘Q’ is false. By contrast ‘P ⊨ Q’ is a sentence in the
metalanguage. It doesn’t just claim that it is not the case that ‘P’ is true and ‘Q’ is false, but
makes the stronger — and as it happens false — claim that there exists no valuation at all
that makes ‘P’ true and ‘Q’ false.

Despite this important difference, there are some close connections between conditionals
in TFL and claims about entailment in the metalanguage. Observe the following:

• ϕ ⊨ ψ iff no valuation makes ϕ true and ψ false.
• ϕ→ ψ is a tautology iff no valuation makes ϕ→ ψ false. Since a conditional is only

false if its antecedent is true and its consequent false, this means that ϕ → ψ is a
tautology iff no valuation makes ϕ true and ψ false.

Combining these two observations, we see that:

ϕ ⊨ ψ iff ⊨ ϕ → ψ

This means that the entailment ϕ ⊨ ψ holds if and only if the corresponding conditional
ϕ → ψ is a tautology. Note: the mere truth of the conditional ϕ → ψ does not suffice for
the entailment ϕ ⊨ ψ to hold. For the latter to hold, ‘ϕ → ψ’ doesn’t just have to be true, it
has to be a tautology. More generally, we have:

ϕ1, . . . ,ϕn,ψ ⊨ χ iff ϕ1, . . . ,ϕn ⊨ ψ → χ

■ Exercises 3.6
A. Use joint truth tables to determine if the following entailments hold:

1. A→ A ⊨ A
2. A→ (A∧¬A) ⊨ ¬A
3. A∨ (B→ A) ⊨ ¬A→¬B
4. A∨B,B∨C,¬A ⊨ B∧C
5. (B∧A)→C,(C∧A)→ B ⊨ (C∧B)→ A
6. P→ (P∨Q),P ⊨ Q
7. (P→ Q),(¬R→¬Q),P ⊨ R
8. A∨ (B∨C),¬A,B→C ⊨C

B. Symbolize the following argument and use a joint truth table to determine if it is valid:

If Bugs Bunny is a rabbit, then he is a mammal.
Bugs Bunny is a mammal.
∴ Bugs Bunny is a rabbit.

C. Construct joint truth tables to determine whether the following hold:

1. (A↔ B) ⊨⊨ ((A→ B)∧ (B→ A))
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2. (A→ B) ⊨⊨ (B→ A)
3. (A→ B) ⊨⊨ (¬A∨B)
4. ((A∧B)∧C) ⊨⊨ (A∧ (B∧C)) (That is: is ∧ is associative?)
5. ((A∨B)∨C) ⊨⊨ (A∨ (B∨C)) (That is: is ∨ is associative?)
6. ((A→ B)→C) ⊨⊨ (A→ (B→C)) (That is: is→ associative?)
7. ((A↔ B)↔C) ⊨⊨ (A↔ (B↔C)) (That is: is↔ is associative?)

D. Here are some important logical equivalence laws:

Double Negation (DN):

¬¬ϕ ⊨⊨ ϕ

DeMorgan’s Laws (DeM):

¬(ϕ ∧ψ) ⊨⊨ ¬ϕ ∨¬ψ

¬(ϕ ∨ψ) ⊨⊨ ¬ϕ ∧¬ψ

Laws of Redundancy (R):

ϕ ∧ϕ ⊨⊨ ϕ

ϕ ∨ϕ ⊨⊨ ϕ

Distributive Laws (Dist):

ϕ ∧ (ψ ∨χ) ⊨⊨ (ϕ ∧ψ)∨ (ϕ ∧χ)

ϕ ∨ (ψ ∧χ) ⊨⊨ (ϕ ∨ψ)∧ (ϕ ∨χ)

Material Conditional Laws:

Imp: ϕ → ψ ⊨⊨ ¬ϕ ∨ψ

NegImp: ¬(ϕ → ψ) ⊨⊨ ϕ ∧¬ψ

Cont: ϕ → ψ ⊨⊨ ¬ψ →¬ϕ

For each of the following, say which equivalence law it is an instance of:

1. (P∨¬Q)∧ (P∨¬Q) ⊨⊨ (P∨¬Q)
2. (P∨¬Q)∧ (P∨¬Q) ⊨⊨ (P∨ (¬Q∧¬Q))
3. (P↔¬Q)∧¬R ⊨⊨ ¬((P↔¬Q)→ R)
4. ¬A∧¬¬(B∧¬C) ⊨⊨ ¬(A∨¬(B∧¬C))
5. ¬B∨¬(A→¬C) ⊨⊨ B→¬(A→¬C)
6. (A∨C)→¬B ⊨⊨ ¬¬B→¬(A∨C)

E. Consider the following principle, and explain whether it is correct or not:

• Suppose ϕ and ψ are equivalent. Then given any argument that contains ϕ (either
as a premise or as its conclusion), replacing ϕ with ψ will not affect that argument’s
validity.

The Limits of Our Tests
This is an important milestone: a test for the validity of arguments! But we shouldn’t get
carried away. It is important to understand the limits of our achievement. We can illustrate
these limits with a few examples. First, consider the argument:

1. Daisy has four legs. ∴ Daisy has more than two legs.

To symbolize this argument in TFL, we’d have to use two different atomic sentences for the
premise and conclusion, maybe ‘F’ an ‘T’. Obviously, ‘F’ does not TF entail ‘T’, and the
argument F ∴ T is therefore not TF valid. And yet the English argument is surely valid!

Similar shortcomings beset our other truth table tests. Consider the sentence:
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2. Jan is neither bald nor not-bald.

We could symbolize this in TFL as ‘¬(J∨¬J)’, or (given DeMorgan’s Laws) as ‘¬J∧¬¬J’.
If we constructed a truth-table for this, we’d see that it’s a TF contradiction. But the English
sentence (2) does not seem like a contradiction: maybe Jan is on the borderline between
being bald and not-bald, and (2) is in fact true! So from the fact that an English sentence
receives a contradictory symbolization in TFL, we can’t always conclude that the English
sentence is necessarily false.

Lastly, consider the following sentence:

3. It’s not the case that, if God exists, then God answers malevolent prayers.

Symbolising this in TFL, we would offer something like ‘¬(G→M)’. Now, ‘¬(G→M)’
is TF equivalent to ‘G∧¬M’ and therefore TF entails ‘G’ (check this with a truth table).
So if we symbolize the English sentence (3) in TFL, it seems to entail that God exists. But
that’s strange: surely even the atheist can accept (3), and not thereby commit herself to the
existence of God!

In different ways, all of these examples highlight some of the limits of working with a
language like TFL that can only handle truth-functional connectives. These limits give rise
to some interesting questions in the field of philosophical logic. Our first argument shows
that TFL is not powerful enough to capture all valid arguments of English. As well see
in §5.9, the more powerful system of FOL will let us more adequately symbolize ‘Daisy
has four legs’ and capture the validity of arguments like this. The case of Jan’s baldness
raises the question of what logic we should use when dealing with vague language. And
the case of the atheist raises the question of how to deal with the paradoxes of material
implication, which arise from differences between English ‘if . . . then’ constructions and
the TFL conditional ‘→’ (see §3.3). Part of the purpose of this book is to equip you with
the tools needed to explore questions like these in philosophical logic. But we have to walk
before we can run. We have to become proficient in using TFL before we can adequately
discuss its limits, and consider alternatives.

3.7 Truth Table Shortcuts

As you become better at constructing truth tables, you will quickly notice that you can use
shortcuts to lighten your work. For example, you know for sure that a disjunction is true
whenever one of the disjuncts is true. So once you find one true disjunct, there is no need to
work out the truth values of the other disjuncts. Thus you might offer:

P Q (¬P∨¬Q) ∨ ¬P
T T F F F F F
T F F T T T F
F T T T
F F T T

We don’t need to know what the truth value of ‘(¬P∨¬Q)’ is on the third and fourth row,
because we already know that ‘¬P’ is true on these rows, meaning that sentence as a whole
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must be true too. What we ultimately care about is the column under the main connective,
so you only need to do as much work as is needed to determine that column.

Similarly, you know for sure that a conjunction is false whenever one of the conjuncts is
false. So if you find one false conjunct, there is no need to work out the truth value of the
other conjunct. Thus you might offer:

P Q ¬(P∧¬Q) ∧ ¬P
T T F F
T F F F
F T T F T T
F F T F T T

There’s no need to look at the truth value of ‘¬(P∧¬Q) on the first and second row since
we already know that the second conjunct ‘¬P’ is false on these rows.

A similar short cut is available for conditionals. You immediately know that a conditional
is true if either its consequent is true, or its antecedent is false. Thus you might present:

P Q ((P→Q)→P)→P
T T T
T F T
F T T F T
F F T F T

So ‘((P→ Q)→ P)→ P’ is a tautology. In fact, it is an instance of Peirce’s Law, named
after Charles Sanders Peirce.

We can apply shortcuts when testing for entailment, or validity, too. To test for entailment,
we need to identify “bad” lines in the joint truth table: lines where the premises are all true
but the conclusion is false. A line like this is a COUNTEREXAMPLE to the entailment. Now:

• If the conclusion is true on a line, then that line can’t be counterexample. (And we
don’t need to evaluate anything else on that line to confirm this.)

• If any premise is false on a line, then that line can’t be a counterexample. (And we
don’t need to evaluate anything else on that line to confirm this.)

With this in mind, we can speed up our tests for validity considerably. Consider how we
might test the following argument for validity:

¬L→ (J∨L),¬L ∴ J

The first thing we should do is evaluate the conclusion. If we find that the conclusion is true
on some row, then that row is not a counterexample, and we can ignore it. In this case that
leaves us with only the third and fourth rows to consider:

J L ¬L→(J∨L) ¬L J
T T T
T F T
F T ? ? F
F F ? ? F
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with the question-marks indicating where we need to keep digging. The easiest premise to
evaluate is the second, so we do that next. Filling in rows three and four for it gives us:

J L ¬L→(J∨L) ¬L J
T T T
T F T
F T F F
F F ? T F

Since ‘¬L’ is false on row three, that row is certainly not a counterexample and we can
ignore it. So this leaves us with only row four to consider. Filling it in gives us:

J L ¬L→(J∨L) ¬L J
T T T
T F T
F T F F
F F T F F T F

The truth table has no counterexample rows, so the argument is valid. Any valuation which
makes the conclusion false also makes at least one premise false.

■ Exercises 3.7
A. Using shortcuts, check whether each of the following is a tautology, a contradiction, or
contingent:

1. ¬D∨D
2. (A∧B)∨ (B∧A)
3. ¬[A→ (B→ A)]
4. A↔ [A→ (B∧¬B)]
5. ¬(A∧B)↔ A
6. (A∧¬A)→ (B∨C)
7. (B∧D)↔ [A↔ (A∨C)]

3.8 Partial Truth Tables

Using shortcuts like these can save a lot of work. But we can get even more efficient. Re-
call that truth tables grow exponentially: to test an argument involving n atomic sentences,
we have to consider a joint truth table with 2n rows. So if an argument involves 5 atomic
sentences, for example, that would mean setting up a 32 row table!

We can be more efficient by using the method of constructing partial truth tables. To
show that an entailment fails, it suffices to find a single counterexample, i.e. a single val-
uation that makes all the premises true and the conclusion false. So rather than to set up a
complete joint truth table and determine whether any row meets this condition, it is often
quicker to try and actively construct a truth table row that does the trick. There are two
possible outcomes:
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▷ We might succeed in constructing a counterexample. We can then conclude that the
entailment fails and the argument is invalid.

▷ We might discover that it’s impossible to construct a counterexample. In this case, we
can conclude that the entailment holds and the argument is valid.

Example 1 Suppose we have to test whether the following is valid:

P↔¬R,(P∨Q)→¬S ∴ P→ (S∨Q)

Rather than set up a sixteen row joint truth table, we’ll see if we can “reverse engineer” an
assignment of truth values to the atomic sentences ‘P’, ‘Q’, ‘R’, and ‘S’ that makes both
premises true and the conclusion false. That is, we want to know whether there’s a way to
fill in truth-values for atomic sentences so as to get a truth-table row that looks as follows:

P Q R S P ↔ ¬ R ( P ∨ Q )→ ¬ S P → ( S ∨ Q )

? ? ? ? T T F

Let’s begin with the conclusion. To make ‘P→ (S∨Q)’ false, we have to make ‘P’ true
and ‘(S∨Q)’ false, which means making both ‘S’ and ‘Q’ false:

P Q R S P ↔ ¬ R ( P ∨ Q )→ ¬ S P → ( S ∨ Q )

T F ? F T T T F F F F

Next, given that ‘P’ is true, in order to make ‘P↔¬R’ true we have to make ¬R true as
well, meaning ‘R’ has to be false:

P Q R S P ↔ ¬ R ( P ∨ Q )→ ¬ S P → ( S ∨ Q )

T F F F T T T F T T F F F F

At this point we have a valuation that covers all the atomic sentences. And we know that
it makes the conclusion false and the first premise true. To make sure that our valuation
really constitutes a counterexample to the entailment, we have be sure that it makes the
second premise true as well. And it does:

P Q R S P ↔ ¬ R ( P ∨ Q )→ ¬ S P → ( S ∨ Q )

T F F F T T T F T T F T T F T F F F F

Since the valuation we’ve constructed succeeds as a counterexample, we can conclude that
the entailment does not hold and that the argument is not TF valid. Constructing this partial
truth table was a lot quicker than calculating a complete 16 row table!

Example 2 For another example, consider following TFL argument:

A→ (D∧C),B↔¬D ∴ A→ (¬B∧C)

Again, to test if the premises entail the conclusion, we have to determine whether there is a
truth-table row that looks like this:
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A B C D A → ( D ∧ C ) B ↔ ¬ D A → ( ¬ B ∧ C )

? ? ? ? T T F

We begin with the conclusion: to make ‘A→ (¬B∧C)’ false, we have to make ‘A’ true and
‘(¬B∧C)’ false. We could make ‘(¬B∧C)’ false by either making ‘¬B’ false or making
‘C’ false. We don’t know which yet, so all we have at this stage is:

A B C D A → ( D ∧ C ) B ↔ ¬ D A → ( ¬ B ∧ C )

T ? ? ? T T T F F

However, since we’re trying to make the first premise ‘A→ (D∧C)’ true, and we’ve
made ‘A’ true, we have to make both ‘D’ and ‘C’ true:

A B C D A → ( D ∧ C ) B ↔ ¬ D A → ( ¬ B ∧ C )

T ? T T T T T T T T T F F

Next, since ‘D’ is true, ‘¬D’ must be false, so given that we’re trying to make ‘B↔¬D’
true, we have to make B false as well:

A B C D A → ( D ∧ C ) B ↔ ¬ D A → ( ¬ B ∧ C )

T F T T T T T T T F T F T T F F

We now have truth values assigned to all our atomic sentences. But there’s a problem: we’ve
had to make ‘B’ false and ‘C’ true, which means that ‘(¬B∧C) is true. But that now makes
our conclusion ‘A→ (¬B∧C)’ true:

A B C D A → ( D ∧ C ) B ↔ ¬ D A → ( ¬ B ∧ C )

T F T T T T T T T F T F T T F/T! T F T T

whereas we were trying to construct a valuation that makes it false! What we’ve discovered
is that it’s impossible to construct such a valuation. So we can conclude that the entailment
holds, and that the argument is TF valid.

Notice that the truth table row we’ve constructed technically does not, by itself, show that
the entailment holds. All it shows is that the particular valuation on which ‘A’, ‘C’, and ‘D’
are true and ‘B’ is false does not succeed in making premises true and the conclusion false.
To show that the argument is valid, we have to show that no other valuation can make the
premises true and the conclusion false either.

To show that the entailment holds, we can give a verbal proof in English that recapitulates
the reasoning we went through in constructing our (failed) truth table row. The proof looks
like this:

Claim: A→ (D∧C),B↔¬D ⊨ A→ (¬B∧C)

Proof: assume (for reductio) that there exists a valuation, let’s call it v, that makes
‘A→ (D∧C)’ and ‘B↔¬D’ true but ‘A→ (¬B∧C)’ false. Since ‘A→ (¬B∧C)’
is false, ‘A’ must be true. And since ‘A→ (D∧C)’ is true and ‘A’ is true, we know
‘(D∧C)’ must be true, meaning that both ‘D’ and ‘C’ are true. Further, since ‘D’ is
true, ‘B’ must be false in order for ‘B↔¬D’ to be true. But now if ‘B’ is false and ‘C’
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is true, ‘¬B∧C’ is true, meaning that the conclusion ‘A→ (¬B∧C) is true as well.
This contradicts our original assumption that ‘A→ (¬B∧C)’ is false on v. Since our
assumption lead to a contradiction, we can conclude that the assumption is false, that
is, that there does not exist a valuation that makes ‘A→ (D∧C)’ and ‘B↔¬D’ true
but ‘A→ (¬B∧C)’ false. So the entailment holds. QED3

This style of proof is called a proof by reductio ad absurdum: we began with an assumption
(that there exists a valuation that makes the premises true and the conclusion false), showed
that a contradiction (or “absurdity”) results from it, and concluded that the assumption is
false (that there exists no such valuation).

Instead of giving a reductio proof like this in English, we could instead construct a full 16
row truth table, and demonstrate validity that way (showing that none of the 16 rows con-
stitute counterexamples to the entailment). But giving the proof in English is often quicker,
and gives us more insight, so we’ll generally give proofs like this to demonstrate that an
entailment does hold. The following diagram summarizes the method of constructing coun-
terexamples via partial truth tables:

Determine whether ϕ1 . . .ϕn ⊨ ψ

Suppose there exists a valuation v making ϕ1...ϕn true and ψ false

Possibility A: the assump-
tion reveals a counterexam-
ple, i.e. a valuation making
ϕ1...ϕn true and ψ false.

Possibility B: the assump-
tion leads to a contradic-
tion, meaning that there
exists no such valuation.

Conclusion: ϕ1 . . .ϕn ⊭ ψ .
Display your counterexam-
ple.

Conclusion ϕ1 . . .ϕn ⊨ ψ .
Write out a reductio proof
in English that spells out
your reasoning.

■ Exercises 3.8
A. Use the partial truth table method to determine whether the following entailments hold.
Remember: if you find that the entailment holds, you need to give a reductio proof in En-
glish. A one-row partial table only suffices to demonstrate that an entailment fails to hold.

1. A→ (C∨E), B→ D ⊨ (A∨B)→ (C→ (D∨E))
2. D∨¬A, ¬(B∨C)→¬D ⊨ A→ (B ∧ C)
3. (D→ H)→ P, D→¬(C∨G), C∨H ⊨ D→ P
4. A→ (B ∧ E), D→ (A∨C), ¬E ⊨ D→ B
5. ¬A∨ (B→C), E→ (B∧A), C→ E ⊨ C↔ A
6. ¬C→ (¬B∧¬D), C→¬A, B∨A ⊨ A↔¬C

3Here ‘QED’ abbreviates the latin phrase “quod erad demonstrandum,” meaning “which was to be proven.”
Writing QED at the end of a proof is a signal that the proof is complete, and establishes the claim we set out to
prove.
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7. P∨Q,P→ R,Q→¬R ⊨ P↔ R
8. A∨

[
A→ (A↔ A)

]
⊨ A

9. A↔¬(B↔ A) ⊨ A
10. A→ B,B ⊨ A
11. A∨B,B∨C,¬B ⊨ A∧C
12. A↔ B,B↔C ⊨ A↔C

3.9 Testing for Other Semantic Notions

We can use partial truth tables to test for other semantic notions, besides entailment.

Tautology To test whether ‘(U ∧ T )→ (S∧W )’ is a tautology, we can set up a partial
truth table and see whether it’s possible to make the sentence false:

S T U W (U∧T )→(S∧W )

F

Since this is a conditional, and we’re trying to make it flase, the antecedent must be true and
the consequent must be false:

S T U W (U∧T )→(S∧W )

T F F

In order for the ‘(U ∧T )’ to be true, both ‘U’ and ‘T ’ must be true.

S T U W (U∧T )→(S∧W )

T T T T T F F

Now we just need to make ‘(S∧W )’ false. To do this, we need to make at least one of ‘S’
and ‘W ’ false. We can make both ‘S’ and ‘W ’ false if we want. All that matters is that the
whole sentence turns out false on this line. Making an arbitrary decision, we finish the table
in this way:

S T U W (U∧T )→(S∧W )

F T T F T T T F F F F

So we now have a partial truth table which shows that there is a valuation which makes
‘(U ∧T )→ (S∧W )’ false, namely, the valuation which makes ‘S’ false, ‘T ’ true, ‘U’ true
and ‘W ’ false. So we can conclude that ‘(U ∧T )→ (S∧W )’ is not a tautology.

Our partial truth table suffices to show that this sentence is not a tautology. But a partial
truth table does not suffice to show that a sentence is a tautology, just as it doesn’t suffice to
show that an argument is valid. To show that a sentence is a tautology, i.e. to show that it’s
true on every valuation, we’d have to either give a full truth table, or a reductio argument in
English showing that it’s impossible to construct a valuation that makes the sentence false.
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Contradiction. To test whether a sentence is a contradiction, we see whether we can
construct a valuation that makes it true:

S T U W (U∧T )→(S∧W )

T

To make the sentence true, it will suffice to ensure that the antecedent is false. Since the an-
tecedent is a conjunction, we can just make one of them false. Making an arbitrary choice,
let’s make ‘U’ false; we can then assign any truth value we like to the other atomic sen-
tences.

S T U W (U∧T )→(S∧W )

F T F F F F T T F F F

Since there is a valuation that makes the sentence true, our partial table shows that it is not
a contradiction. Again, to show that something is a contradiction (false on every valuation),
we’d have to give a full truth table or a reductio argument showing it is impossible to make
the sentence true.

Consistency. To test some sentences for consistency, we would test whether we can con-
struct a partial truth table which makes all of the sentence true. If we succeed, that is suf-
ficient to demonstrate consistency. To demonstrate inconsistency we’d have to give a full
truth table, or a reductio argument showing that it is impossible to make all the sentences in
question true.

Equivalence To test two sentences for equivalence, we would test whether we can con-
struct a partial truth table on which the two sentences have different truth values. If we
succeed, that is sufficient to show that the sentences are not equivalent. To demonstrate
equivalence, we’d have to give a full truth table, or a reductio argument showing that it’s
impossible to make the sentences have different truth values (or alternatively, two reductio
arguments showing that the sentences mutually entail each other).

This table summarises what is required:

Yes No
Entailment? complete table or reductio partial truth table
Tautology? complete table or reductio partial truth table
Contradiction? complete table or reductio partial truth table
Consistent? partial truth table complete table or reductio
Equivalent? complete table or reductio partial truth table

■ Exercises 3.9
A.

Use the partial truth table method to determine whether these pairs of sentences are equiv-
alent. And remember, if you find they are equivalent you need to give a reductio proof (or a
full truth table).
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1. A, ¬A
2. A, A∨A
3. A→ A, A↔ A
4. A∨¬B, A→ B
5. A∧¬A, ¬B↔ B
6. ¬(A∧B), ¬A∨¬B
7. ¬(A→ B), ¬A→¬B
8. (A→ B), (¬B→¬A)

B. Use the partial truth table method to determine whether these sentences are jointly con-
sistent or inconsistent. Again, to show they’re inconsistent you need to give a reductio proof
(or a full truth table).

1. A∧B, C→¬B, C
2. A→ B, B→C, A, ¬C
3. A∨B, B∨C, C→¬A
4. A, B, C, ¬D, ¬E, F
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4.1 The Idea Behind Natural Deduction

We’ve seen how to use truth tables to determine whether a TFL argument is valid. Truth
tables are nice because they give us a completely mechanical test for validity: we just crunch
through the table and see whether there is any valuation that makes all the premises true
and the conclusion false. But truth tables don’t give us much insight into why arguments
are valid.

A rather different approach to logic is to try to deduce the conclusion from the premises
via a series of simple inferences. Think of this as the Sherlock Holmes approach to logic:
given some evidence (premises), Holmes methodically draws one inference after another,
until he arrives at a conclusion about who committed the crime. If all the inferences in the
deduction are correct, the conclusion must follow from the premises Holmes started with.

What we will do in this chapter is to introduce a NATURAL DEDUCTION system that
formalizes this process of deducing things from premises. We’ll introduce a few very basic
rules of inference, which can then be combined into more complicated chains of reasoning.
Indeed, with just a small set of rules, we will be able to capture all valid arguments. Whereas
truth tables are completely mechanical, natural deduction requires insight and ingenuity.
This makes it harder, but also more interesting and rewarding.

The move to natural deduction can be motivated by more than the search for insight,
however. It might also be motivated by necessity. In TFL, truth tables give us a completely
mechanical test for validity. Of course they can get unmanageably big as the number of
atomic sentences increase, but you could in principle program a computer to crunch through
them for you. When we get to FOL, in the second part of this book, things will look very
different. There is nothing like the truth table test for validity available in FOL. The fact
that there is no completely mechanical test for validity in FOL is a deep mathematical
result, independently proved by Alan Turing and Alonzo Church in 1936. So in FOL, using
methods that require ingenuity and insight become indispensable, and we will have to rely
on natural deduction to prove arguments valid.

The modern development of natural deduction dates from simultaneous papers from 1934
by Gerhard Gentzen and Stanisław Jaśkowski. Later, in 1952, Frederic Fitch introduced the
graphical “Fitch notation” for natural deduction proofs that we will use here.

54
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4.2 Setting up Natural Deduction Proofs

The NATURAL DEDUCTION system we will develop includes a pair of rules for every con-
nective in the language. INTRODUCTION RULES allow us to prove a sentence that has that
connective as the main logical operator, and ELIMINATION RULES allow us to prove some-
thing from a sentence that has that connective as the main logical operator.

Our natural deduction proofs will be formal proofs. They will consist of a sequence of
lines, with the premises listed at the top and the conclusion at the bottom. All the lines in
between have to be justified as following from earlier lines via some rule of inference. As
an illustration, consider the following instance of DeMorgan’s Law:

¬(A∨B) ∴ ¬A∧¬B

We would start this proof by writing the premise:

1 ¬(A∨B) Premise

Note that we have numbered the premise, since we will want to refer back to it. Indeed, every
line on a proof is numbered so that we can refer back to it. Note also that we have drawn
a vertical line to the left and a horizontal line underneath the premise. Everything written
above the horizontal line is an assumption — so the premise is introduced into the proof as
an assumption. Everything written below the horizontal line will either be something which
follows from this assumption, or it will be some new assumption.

We are hoping to conclude that ‘¬A∧¬B’. So we are hoping ultimately to end our proof
with a line that looks like this:

n ¬A∧¬B

for some line number n. It doesn’t matter what line number we end on, but we would
obviously prefer a short proof to a long one.

Or to take another example, suppose we wanted to prove that the following is valid:

A∨B,¬(A∧C),¬(B∧¬D) ∴ ¬C∨D

The argument has three premises, so we start by writing them all down, numbered, and
drawing a vertical line the the left and a horizontal line underneath:

1 A∨B Premise

2 ¬(A∧C) Premise

3 ¬(B∧¬D) Premise

We are aiming to conclude with a line that looks like this:

n ¬C∨D
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What we have to learn are rules of inference, and how to chain them together to move in a
step-by-step fashion from the premises to the conclusion.

Before we look at the rules, however, we’ll introduce some new terminology and notation
having to do with proofs. We will use the following expression:

ϕ1, . . . ,ϕn ⊢ ψ

to mean that ψ is provable from ϕ1, . . . ,ϕn. That is, that there exists a proof which ends
with ψ and whose premises include at most ϕ1, . . . ,ϕn. We’ll call a provability claim of
this form a SEQUENT. By providing a natural deduction proof, we can demonstrate that a
sequent holds, i.e. demonstrate that ψ is indeed provable from ϕ1, . . . ,ϕn. When we want to
say that ψ is not provable from ϕ1, . . . ,ϕn, we write:

ϕ1, . . . ,ϕn ⊬ ψ

Natural deduction does not give us a way to verify claims like these, about the non-existence
of a proof. More complicated reasoning would be required to show this kind of thing.

The symbol ‘⊢’ is called the single turnstile. This is not the same as the double turn-
stile symbol ‘⊨’ that we used to symbolize entailment in chapter 3. The single turnstile ‘⊢’
says something about the existence of a certain kind of proof (one that begins with cer-
tain premises and ends in a certain conclusion). The double turnstile ‘⊨’ says something
about the non-existence of a certain kind of valuation (one that makes the premises true
and the conclusion false). Valuations are completely different kinds of things from proofs,
so it’s important not to confuse ‘⊢’ (the proof theoretic notion of provability) with ‘⊨’ (the
semantic notion of entailment).

That said, the system of natural deduction that we will develop is designed to deliver a
proof whenever a semantic entailment holds. That is, it is designed to ensure:

COMPLETENESS: If ϕ1, . . . ,ϕn ⊨ ψ then ϕ1, . . . ,ϕn ⊢ ψ

meaning that if ψ is semantically entailed by ϕ1, . . . ,ϕn, then there must also exist a proof
of ψ from ϕ1, . . . ,ϕn. Our natural deduction system is also designed to guarantee the other
direction:

SOUNDNESS: If ϕ1, . . . ,ϕn ⊢ ψ then ϕ1, . . . ,ϕn ⊨ ψ

meaning that whenever ψ is provable from ϕ1, . . . ,ϕn, then ψ is also semantically entailed
by ϕ1, . . . ,ϕn.1 All good proof systems should be both sound and complete, to ensure that
the proof-theoretic notion of provability matches up perfectly with the semantic notion of
entailment. In a more advanced logic class, you learn how to provide “meta-logical” proofs
showing that a proof system is both sound and complete, but here you’ll just have to take
my word for it that our natural deduction system will have both of these features.

We also have a proof-theoretic analogue of the semantic notion of TF equivalence:

Two sentences ϕ and ψ are PROVABLY EQUIVALENT iff each is provable
from the other; i.e., both ϕ ⊢ ψ and ψ ⊢ ϕ , also written ϕ ⊢⊢ ψ .

Given that our natural deduction system is both sound and complete, we will again have
it that any two TF equivalent sentences are also provably equivalent, and vice versa. Let’s
now look at the rules that constitute our system of natural deduction.

1Note that this is a different notion of soundness from the one we discussed in §1.3.
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4.3 Conjunction Rules

Suppose I want to show that Alice is both a logician and a tennis player. One obvious way
to do this would be as follows: first I show that Alice is a logician; then I show that Alice is
a tennis player; then I put these two demonstrations together to obtain the conjunction.

Our natural deduction system will capture this thought via the rule of ∧-Introduction, or
∧I for short. Perhaps I am working through a proof, and have obtained ‘H’ on line 8 and
‘R’ on line 15. Then on any subsequent line I can obtain ‘H ∧R’ thus:

8 H
...

15 R
...

H ∧R ∧I 8, 15

Every line of our proof must either be a premise (or an assumption, as we’ll see later), or
must be justified by some rule like this. We cite ‘∧I 8, 15’ here to indicate that ‘H ∧R’ is
obtained by the rule of conjunction introduction applied to lines 8 and 15. We could equally
well have conjoined the conjuncts in the opposite order to infer ‘R∧H’ rather than ‘H∧R’,
though then we should also adjust our rule citation to read ‘∧I 15, 8’, with the line numbers
of the two conjuncts listed in the opposite order.

More generally, our conjunction introduction rule is:

m ϕ

n ψ

ϕ ∧ψ ∧I m, n

Here lines m and n can occur in either order, i.e. ϕ could occur first in the proof followed
by ψ later on, or ψ could occur first followed by ψ later on.

The rule is called “conjunction introduction” because it introduces the symbol ‘∧’ into
our proof where it may have been absent. Correspondingly, we have a rule that eliminates
that symbol. Suppose you have shown that Alice is both a logician and a tennis player. Then
you’re entitled to infer that Alice is a logician, and you’re also entitled to infer that Alice is
a tennis player. This gives us our conjunction elimination rule(s):

m ϕ ∧ψ

ϕ ∧E m

and equally:
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m ϕ ∧ψ

ψ ∧E m

The point is simply that, when you have a conjunction on some line in a proof, you can
obtain either of its two conjuncts by applying the rule of ∧E.

One point is worth emphasizing: you can only apply this rule (as well as the other rules
we’ll introduce) to the main logical operator of a sentence. So the following would not be
a legitimate use of ∧E:

1 P∧ (Q∧R)

2 R ∧E 1

I can only apply ∧E to the main operator of ‘P∧(Q∧R)’, giving me either ‘P’ or ‘(Q∧R)’. I
could then apply∧E to the latter to get ‘R’ itself; but I can’t get R directly from ‘P∧(Q∧R)’.

Here’s an example that illustrates this. The following argument is valid (showing that ∧
is associative):

A∧ (B∧C) ∴ (A∧B)∧C

To provide a proof for this argument, we start by writing the premise:

1 A∧ (B∧C) Premise

From the premise, we can get both ‘A’ and ‘(B∧C)’ by applying ∧E twice. And we can
then apply ∧E twice more to (B∧C) to get a proof that looks like this:

1 A∧ (B∧C) Premise

2 A ∧E 1

3 B∧C ∧E 1

4 B ∧E 3

5 C ∧E 3

Again: we cannot get ‘B’ or ‘C’ by applying ∧E directly to line 1. We first have to get
‘(B∧C)’ from 1, and then get ‘B’ and ‘C’ out of this by applying ∧E again. To get to our
desired conclusion, we now just put the various atomic sentences back together using ∧I:



4. NATURAL DEDUCTION FOR TFL 59

1 A∧ (B∧C) Premise

2 A ∧E 1

3 B∧C ∧E 1

4 B ∧E 3

5 C ∧E 3

6 A∧B ∧I 2, 4

7 (A∧B)∧C ∧I 6, 5

Notice that whereas ∧E gets applied to a single line, ∧I gets applied to two lines. How-
ever, ∧I doesn’t necessarily have to be applied to two different lines. If we wanted, for
example, we could formally prove ‘A∧A’ from ‘A’ as follows:

1 A

2 A∧A ∧I 1, 1

And we could now apply ∧E to line 2 to prove the rather uninteresting fact that ‘A’ follows
from ‘A’:

1 A

2 A∧A ∧I 1, 1

3 A ∧E 2

4.4 Conditional Rules

Consider the following argument:

If Jane is smart then she is fast. Jane is smart. So Jane is fast.

This argument is certainly valid. And it suggests a conditional elimination rule (→E):

m ϕ → ψ

n ϕ

ψ →E m, n

This rule implements the modus ponens form of inference mentioned earlier: given a con-
ditional, and given its antecedent, we can infer its consequent. Again, this is an elimination
rule, because it allows us to obtain a sentence that may not contain ‘→’, having started with
a sentence that did contain ‘→’. Note that the conditional and its antecedent can appear in
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either order in our proof. However, in the citation for →E, we should cite the conditional
first, followed by the antecedent.

The rule for conditional introduction is also quite easy to motivate. The following argu-
ment should be valid:

Alice is a chemist. Therefore, if Alice is a biologist, then Alice is both a chemist
and a biologist.

If someone doubted that this was valid, we could try to convince them otherwise by explain-
ing ourselves as follows:

We are given that Alice is a chemist. Now, assume additionally, for the sake
of argument, that Alice is also a biologist. Then by conjunction introduction,
Alice is both a chemist and a biologist. Of course, this only follows given our
assumption that Alice is a biologist. So what we’ve shown is that if Alice is a
biologist, then she is both a chemist and a biologist.

Transferred into natural deduction format, here is the pattern of reasoning that we just used.
We started with one premise, ‘Alice is a chemist’:

1 C Premise

The next thing we did is to make an temporary assumption (‘Alice is a biologist’), for the
sake of argument. To indicate that we are no longer dealing merely with our original premise
‘C’, but with an additional assumption, we continue our proof as follows:

1 C Premise

2 B Assumption

Introducing ‘B’ as a temporary assumption opens up a subproof. Inside this subproof we can
now reason under the assumption, or hypothesis, that ‘B’ holds. We indicate this by drawing
a line under ‘B’ (to indicate that it is an assumption) and by indenting it with a further
vertical line (to indicate that we have entered a new subproof headed by this assumption).

With this extra assumption in place, we are in a position to use ∧I:

1 C Premise

2 B Assumption

3 C∧B ∧I 1, 2

So we have now shown that, under the assumption that ‘B’ holds, we can infer ‘C∧B’. We
can therefore conclude that, if ‘B’ obtains, so does ‘C∧B’. Or, put another way, we can
conclude ‘B→ (C∧B)’:
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1 C

2 B

3 C∧B ∧I 1, 2

4 B→ (C∧B) →I 2–3

Notice that we have popped back out of the subproof opened by our assumption. This in-
dicates that we have now discharged the temporary assumption ‘B’, and concluded that the
conditional itself follows just from our original premise ‘C’. Although you can in principle
always make an assumption, it is absolutely essential that any assumptions you do make be
discharged by the end of the proof. This is why they are temporary assumptions.

The general pattern at work here is the following: to prove a conditional ϕ → ψ , we as-
sume the antecedent ϕ temporarily or “for the sake of argument” (thereby opening a new
subproof), and then try to prove the consequent ψ from that assumption. If we succeed, we
can discharge the assumption (popping out of the subproof) and conclude that the condi-
tional ϕ → ψ holds:

m ϕ

...

n ψ

ϕ → ψ →I m–n

Here’s another illustration of→I in action. Suppose we want to prove:

P→ Q,Q→ R ⊢ P→ R

We start by listing both of our premises at the top and our goal at the bottom. Since our goal
is to prove a conditional, ‘P→ R’, we assume its antecedent and aim to prove its consequent
on that assumption, which opens a new subproof:

1 P→ Q Premise

2 Q→ R Premise

3 P Assumption
...

R

P→ R

Our goal in this subproof is now to prove R from this temporary assumption P. Given ‘P’ ,
we can use→E on the first premise. This will yield ‘Q’. And we can then use→E on the
second premise to get ‘R’. So, by assuming ‘P’ we were able to prove ‘R’! We can now
apply the→I rule, thereby discharging ‘P’ and popping out of the subproof:
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1 P→ Q Premise

2 Q→ R Premise

3 P Assumption

4 Q →E 1, 3

5 R →E 2, 4

6 P→ R →I 3–5

Notice that when applying→I to obtain ‘P→ R’, we have to cite the entire subproof that
begins with ‘P’ and ends with ‘R’. So we use a dash, rather than just a comma, between the
two line numbers (writing ‘3–5’ rather than ‘3,5’).

4.5 Additional assumptions and subproofs

The rule→I invoked the idea of opening subproofs via additional assumptions. This needs
to be handled with some care. Consider this proof:

1 A Premise

2 B Assumption

3 B∧B ∧I 2, 2

4 B ∧E 3

5 B→ B →I 2–4

This is a perfectly legitimate, if somewhat unusual, proof. What it shows is that the argument
A ∴ B→ B is valid. This is as it should be: ‘B→ B’ is a tautology, and any argument with
a tautology as its conclusion is valid. But suppose we now tried to continue the proof as
follows:

1 A Premise

2 B Assumption

3 B∧B ∧I 2, 2

4 B ∧E 3

5 B→ B →I 2–4

6 B No!! →E 5, 4

If we were allowed to do this, it would be a disaster: our proof would now purport to show
that the argument A ∴ B is valid. We could in this way prove any conclusion we liked
from any premise whatsoever. That would obviously destroy the soundness of our natural
deduction system.
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What has gone wrong here is that on line 6 we’ve illegitimately tried to apply→E to line
4, which occurs inside a subproof we’ve already closed off. A subproof can be thought of
as showing what would follow if the assumption that opens it held. While we are working
within the subproof, we can refer to the assumption that we made to open the subproof,
and to anything that we obtained from our premises. After all, those premises still hold. But
once we close the subproof and return to the main proof, the assumption that opened it has
been DISCHARGED, and it becomes illegitimate to draw upon anything that depends upon
that assumption, i.e. on anything inside the subproof opened by that assumption. Thus we
stipulate:

To cite any individual line when applying a rule, that line must (1) oc-
cur before the application of the rule, but (2) not occur within a closed
subproof.

The application of→E in the faulty proof above involves citing a line (namely line 4) that
occurs within a subproof that has (by line 6) been closed. This is illegitimate.

Once we have started thinking about what we can show by making additional assump-
tions, nothing stops us from posing the question of what we could show if we were to make
even more assumptions. We can in other words introduce a subproof within a subproof.
Here is an example of such nested subproofs:

1 A Premise

2 B Assumption

3 C Assumption

4 A∧B ∧I 1, 2

5 C→ (A∧B) →I 3–4

6 B→ (C→ (A∧B)) →I 2–5

This proof gets set up as follows: we begin with the premise ‘A’ and the goal of proving
‘B→ (C→ (A∧B))’. Since the conclusion is a conditional, we assume its antecedent ‘B’
and set ourselves the new goal of proving its consequent ‘(C→ (A∧B))’ using this addi-
tional assumption. But our new goal ‘(C→ (A∧B))’ is itself a conditional, so we repeat the
same process: assume its antecedent ‘C’, and try to prove its consequent ‘A∧B’ in the sub-
proof we’ve opened. Proving ‘A∧B’ is easy: we can just apply ∧I to our original premise
from line 1 and our first assumption from line 2. Referring back to lines 1 and 2 in step 4 of
the proof in this manner is legitimate, since neither line occurs in a subproof that has been
closed by the time of step 4.

But it would now not be legitimate to continue the proof as follows:
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1 A

2 B

3 C

4 A∧B ∧I 1, 2

5 C→ (A∧B) →I 3–4

6 B→ (C→ (A∧B)) →I 2–5

7 C→ (A∧B) No!!→I 3–4

This would be awful. This proof would purport to show that ‘C→ (A∧B)’ can be deduced
from the premise ‘A’. But the argument ‘A ∴C→ (A∧B)’ is certainly not valid. Again, if
we were allowed to do this kind of thing, our proof system would no longer be sound.

The problem is that the subproof that began with the assumption ‘C’ occurs within the
scope of (i.e. within the subproof opened by) assumption ‘B’ on line 2. By line 6, we have
discharged assumption ‘B’. So it is cheating to try to help ourselves (on line 7) to a sub-
proof that occurs within the scope of an assumption that has already been discharged. Here
the problem isn’t that we cited an individual line that occurs inside a closed subproof, but
that we cited an entire subproof that occurs inside a closed subproof. So we expand our
stipulation to cover rules that cite entire subproofs:

To cite a subproof when applying a rule, the subproof must (1) come be-
fore the application of the rule, but (2) not occur within some other closed
subproof.

Our proof above violates this stipulation, since the subproof of lines 3–4 occurs within the
subproof spanning lines 2–5, which has already been closed by the point we get to line 7.

And to again emphasize a point from earlier: although you can, in principle, always make
any temporary assumption you like, you always have to ultimately have a way of discharg-
ing that assumption and popping out of the subproof that it opens (otherwise it wouldn’t be
temporary any more!). For this reason it is very important to only make assumptions when
you have a discharge strategy in mind. At this point, we have only one rule that allows us
to make an assumption, and that is the rule of →I: if your goal is to prove a conditional
ϕ → ψ , you should assume its antecedent ϕ and try to prove its consequent ψ inside the
subproof opened by that assumption. But at this point, this is the only time at which you
should be making assumptions — when aiming to prove conditionals.

■ Exercises 4.5
A. Prove the following sequents (these require only conjunction rules and→E):

1. A∧ (B∧C) ⊢ (A∧B)∧C
2. P∧Q, R, (Q∧R)→ S ⊢ S
3. P∧Q,(Q∧P)→ R ⊢ R
4. A∧B,B→ (A→C) ⊢C∧B
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5. (A→ ((C∧A)→ D)),(A∧C) ⊢ D

B. Prove the following sequents (these now also require→I, and note that the last one asks
you to prove an equivalence, meaning you have to give proofs in both directions):

1. (A→ (B∧D)),(A→C) ⊢ (A→ (C∧D))
2. A→ B,B→C ⊢ A→C
3. A→ B,B→C ⊢ A→ (B∧C)
4. (A∧B)→C,A→ B ⊢ A→C
5. A→ B ⊢ (A∧C)→ (B∧C)
6. A→ (B→C) ⊢⊢ (A∧B)→C

4.6 Proving Theorems and Reiterating

We said that the sequent ϕ1, . . . ,ϕn ⊢ ψ means that there exists a proof ending in ψ whose
premises include at most ϕ1, . . . ,ϕn. Similarly, we will write:

⊢ ϕ

to say that there is a proof of ϕ with no premises whatsoever. Sentences which are provable
with no premises are called THEOREMS. Notice the similarity with our notation in seman-
tics, where we used ⊨ ϕ to say that ϕ is a tautology. This is no accident: given that our
system of natural deduction is both is sound and complete, every tautology should be a
theorem of our proof system, and vice versa.

For example, since (A∧B)→ A is a tautology, we should be able to prove it with no
premises. Here’s how that looks like:

1 A∧B Assumption

2 A ∧E 1

3 (A∧B)→ A →I 1–2

Notice that, unlike in any of the other proofs we’ve looked at, the leftmost vertical line,
which appears next to our conclusion, has no premise listed at its top. This graphically
indicates that ‘(A∧B)→ A’ is a theorem in our proof system, i.e. something that is provable
without any premises.

As another example, take the tautology ‘A→ (B→ A)’. This is provable as a theorem as
follows:
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1 A Assumption

2 B Assumption

3 A∧B ∧I 1, 2

4 A ∧E 3

5 B→ A →I 2–4

6 A→ (B→ A) →I 1–5

This proof is a bit odd: since we’re trying to prove ‘(B→ A)’ on line 5, the subproof that
begins with ‘B’ on line 2 has to end with ‘A’. We already have ‘A’ as an assumption on line
1, but the only way to get it to appear at the end of our second subproof is to first conjoin it
with ‘B’ to get ‘(A∧B)’ on line 3, and then to use ∧E to get it back on its own on line 4.

In order to avoid having to use the trick of using ∧I and ∧E in this way to repeat earlier
lines at later stages in a proof, we’ll allow ourselves to use the following shortcut rule:

REITERATION RULE: at any point in a proof, we may write down a sen-
tence occurring on any line that (i) appears before that point in the proof,
and (ii) isn’t inside a closed subproof.

Notice that Reiteration is never essential: we could always use ∧I together with ∧E instead.
Shortcuts like this are called Derived Rules, and we’ll introduce more of them later in
§4.11. Using Reiteration our earlier proof can be shortened to:

1 A Assumption

2 B Assumption

3 A Reit 1

4 B→ A →I 2–3

5 A→ (B→ A) →I 1–4

Reiteration also gives us a quick way to prove that ‘B→ B’ is a theorem:

1 B Assumption

2 B Reit 1

3 B→ B →I 1–2

In fact, just as ∧I can be applied to a single line to go from ‘A’ to ‘A∧A’, so→I can in
principle be applied to a subproof that consists of just one line. So an even shorter proof of
the theorem ‘B→ B’ can be given like this:
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1 B Assumption

2 B→ B →I 1–1

■ Exercises 4.6
A. Prove the following theorems:

1. ⊢ (A∧B)→ (B∧A)
2. ⊢ (A→ B)→ ((B→C)→ (A→C))
3. ⊢ (A→ (B→C))→ (B→ (A→C))
4. ⊢ A→ (B→ A)
5. ⊢ (A∧B)→ (B→ A)
6. ⊢ P→ P
7. ⊢ Q→ (P→ P)

4.7 Biconditional Rules

The rules for the biconditional are like bidirectional versions of the rules for the conditional.
In order to prove ‘F ↔ G’, for instance, you must be able to prove ‘G’ on the assumption
‘F’ and prove ‘F’ on the assumption ‘G’. The biconditional introduction rule↔I therefore
requires two subproofs. Schematically, the rule works like this:

i ϕ

...

j ψ

k ψ

...

l ϕ

ϕ ↔ ψ ↔I i– j, k–l

There can be as many lines as you like between i and j, and as many lines as you like
between k and l. Moreover, the subproofs can come in any order, and the second subproof
does not need to come immediately after the first.

The biconditional elimination rule ↔E is like →E in both directions. If you have the
left-hand subsentence of the biconditional, you can obtain the right-hand subsentence, and
if you have the right-hand subsentence, you can obtain the left-hand subsentence:
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m ϕ ↔ ψ

n ϕ

ψ ↔E m, n

and:

m ϕ ↔ ψ

n ψ

ϕ ↔E m, n

As usual, lines m and n can occur in either order, but in the citation for↔E, we always cite
the line number of the biconditional first.

Here’s an example involving↔I:

1 A∧B Premise

2 A Assumption

3 B ∧E 1

4 B Assumption

5 A ∧E 1

6 A↔ B ↔I 2–3, 4–5

My reasoning for setting this up is that since it’s my goal to prove ‘A↔ B’, I will have to
create two subproofs, one for each direction of the biconditional. My first subproof (lines
2–3) begins with the assumption ‘A’ and ends with ‘B’, and my second subproof (lines 4–5)
goes the other way, beginning with the assumption ‘B’ and ending with ‘A’.

■ Exercises 4.7
A. Prove the following:

1. A∧B ⊢ A↔ B
2. A↔ B ⊢ B↔ A
3. A↔ B ⊢ (A∧C)↔ (B∧C)
4. (A∧B)↔ (A∧C) ⊢ A→ (B↔C)
5. A↔ B,B↔C ⊢ A↔C
6. P→ R, R→ (S∧P) ⊢ P↔ R
7. P↔ (Q∧R), R→ P ⊢ P↔ R
8. K∧L ⊢ K↔ L
9. A↔ B ⊢ (A∧C)↔ (B∧C)
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10. (Z∧K)↔ (Y ∧M),D∧ (D→M) ⊢ Y → Z
11. ⊢ P↔ P

4.8 Negation Rules

Our next connective is negation. In the context of natural deduction, negation is unusual
because the rules governing it involve another notion, that of contradiction. Consider this:
an effective way to argue against someone is to show that the assumptions they are making
collectively lead to a contradiction. At that point, you have your opponent in a bind: since
your opponent’s assumptions lead to a contradiction, they can’t all be true! So they have
to give up at least one of those assumptions. This argumentative strategy exemplifies the
reductio ad absurdum reasoning that we encountered in §3.8.

Our negation introduction rule provides a formal implementation of this reductio ad ab-
surdum proof strategy: if an assumption leads you to a contradiction (an “absurdity”), then
you know that assumption must be wrong, and you can infer its negation. We’ll use the sym-
bol ‘⊥’ to indicate that a contradiction has been reached. You can think of it as officially
declaring ‘contradiction!’ or ‘reductio!’ or ‘that’s absurd!’ The rule looks like this:

i ϕ

...

j ⊥

¬ϕ ¬I i– j

There can be as many lines between i and j as you like. As with other rules that require
subproofs, you need to cite the entire subproof i– j when applying ¬I.

How do we get the contradiction symbol ⊥ at the end of our subproof? We can declare
a contradiction with ⊥ whenever we have both a sentence and its negation appearing in our
proof. This gives us our negation elimination rule:

m ¬ϕ

n ϕ

⊥ ¬E m, n

It doesn’t matter in what order the sentence and its negation appear, and they don’t need to
appear on adjacent lines—as long as a sentence and its negation appear in your proof (and
neither is trapped inside a closed subproof), you can declare a contradiction with ⊥. This
rule is called ¬E because a negation sign is eliminated in favor of⊥. We could have equally
well called this the ⊥I rule, since it introduces ⊥ into the proof (but we’ll continue to call it
¬E, following Gentzen, who first formulated these rules).

Here’s an example of how this works. Suppose we want to show:

¬A ⊢ ¬(A∧B)
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This should strike you as intuitively valid: if A isn’t true, then of course any conjunction
containing A can’t be true either. To prove this, what we’ll do is assume that ‘(A∧ B)’
is true, derive a contradiction from this assumption together with our premise, and then
conclude ‘¬(A∧B)’ by ¬I. That looks like this (the Reiteration step could be skipped too):

1 ¬A Premise

2 A∧B Assumption

3 A ∧E 2

4 ¬A Reit 1

5 ⊥ ¬E 3, 4

6 ¬(A∧B) ¬I 2–5

The strategy of reasoning by reductio ad absurdum can take another form too, however.
The ¬I rule says that in order to show that some sentence ϕ is false (i.e. that ¬ϕ holds),
we have to show that assuming ϕ leads to a contradiction. But instead of using reductio to
show that something is false, we can also use it to show that something is true: to prove that
ϕ is true, we suppose that it is false, i.e. assume ¬ϕ , and reduce that to a contradiction.

Interestingly, the rules we have assembled so far won’t yet let us replicate this second
style of reductio reasoning. So we’ll add it to our proof system as another primitive rule,
which we’ll call indirect proof :

i ¬ϕ

...

j ⊥

ϕ IP i– j

This is called indirect proof because it lets us prove ϕ “indirectly,” by assuming its negation
and deriving a contradiction from that assumption. It’s quite similar to ¬I, except that the
location of the negation symbol is reversed: instead of deriving a negated sentence (as with
¬I), we instead assume a negated sentence and then infer its un-negated counterpart.2

It bears emphasis that IP is a very powerful rule: any proof whatsoever can in principle
be done using IP as the overall strategy! Just assume the negation of whatever conclusion
you’re trying to prove, derive a contradiction from that, and then infer your conclusion
by IP.3 But be careful: indirect proofs tend to be longer and more complicated than direct
proofs. So IP should only be used as a last resort, when you’re sure that there’s no other
way to complete the proof.

2Why don’t we call IP “negation elimination”? Elimination rules always tell us what can be inferred if we
already have a sentence with the relevant connective in our proof. In the case of IP, ¬ϕ isn’t something we
already have (it’s rather an assumption we make to apply IP), so IP doesn’t eliminate ¬ in the relevant sense.

3In section 3.8, on partial truth tables, we essentially did this kind of proof in English: we assumed that the
premises are true and that the conclusion false (i.e. that its negation is true), and then showed that a contradiction
resulted. We can now do the same reasoning formally, using our rule of IP.
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Here is an example of something that can only be proven using IP:

P∧¬P ⊢ Q

The corresponding entailment P ∧ ¬P ⊨ Q holds: there is no valuation that makes the
premise true and the conclusion false. That’s simply because no valuation makes the
premise true! So if our system of deduction is to be complete, we had better be able to
provide a natural deduction proof of this as well. We can do that with IP, as follows:

1 P∧¬P Premise

2 ¬Q Assumption

3 P ∧E 1

4 ¬P ∧E 1

5 ⊥ ¬E 3,4

6 Q IP 2-5

This proof illustrates the EXPLOSION PRINCIPLE: from a contradiction, like P∧¬P, any-
thing whatsoever follows! We here proved Q, but exactly the same sequence of steps would
have equally well let us prove A, or D, or (S→ L), or anything else. The Explosion Principle
can be stated in general terms as ⊥ ⊢ ϕ .

Another thing that we can only prove using IP is the LAW OF EXCLUDED MIDDLE, which
says that ⊢ ϕ ∨¬ϕ , i.e. that any statement of the form ϕ ∨¬ϕ is a theorem. Proponents of
intuitionistic logic reject the Law of Excluded Middle, because they reject the assumption
we’ve been making throughout this book, that for any statement, it or its negation must be
true. So they must reject our rule IP, since it lets us prove Excluded Middle.

There are also logicians who reject the Explosion Principle. For example, proponents
of relevance logic hold that there must always be some “relevant connection” between the
premises and conclusion of a valid argument — something the Explosion Principle violates.
And proponents of paraconsistent logic hold the view that some contradictions are true, and
that accepting a contradiction should therefore not allow you to infer anything whatsoever.
So they reject the Explosion Principle, and therefore have to use a different set of rules that
doesn’t prove this principle.

Intuitionistic logic, relevance logic, and paraconsistent logic are all varieties of NON-
CLASSICAL LOGIC. However, in CLASSICAL LOGIC, which is what we are here studying,
both the Law of Excluded Middle and the Explosion Principle hold. Since we can’t prove
these without IP, we have to add this rule into our natural deduction system in order to
render it complete with respect to classical logic. You can learn more about negation rules
and completeness in Exercise 4.8 below.

Let’s look at one more proof with IP. CONTRAPOSITION is the following general equiv-
alence law: ϕ → ψ ⊨⊨ ¬ψ → ¬ϕ . Let’s prove an instance of the right-to-left direction:
¬B→¬A ⊢ A→ B. Since we’re trying to prove a conditional, we’ll use→I: we’ll assume
A and try to prove B. But how can we get B from our premise ¬B→¬A together with our
assumption A? The only way to do it is by indirect proof, like this:
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1 (¬B→¬A) Premise

2 A Assumption (for→I)

3 ¬B Assumption (for IP)

4 ¬A →E 1,3

5 ⊥ ¬E 2,4

6 B IP 3-5

7 (A→ B) →I 2-6

To prove B via IP, I assumed ¬B, and showed that this, together with my assumption of A
and our premise 1, leads to a contradiction. The other direction of contraposition holds too:
A→ B ⊢ ¬B→¬A. Try proving this as well; here you’ll be able to use ¬I instead of IP.

■ Exercises 4.8
A. Prove the following:

1. A→ B,A→¬B ⊢ ¬A
2. P→¬Q ⊢ Q→¬P
3. A ∧ ¬B ⊢ ¬(A→ B)
4. ¬(P∧Q) ⊢ P→¬Q
5. ⊢ ¬(A∧¬A)
6. A→¬B ⊢ B→¬A
7. A→ B,B→¬A ⊢ ¬A
8. (A∧B)→¬A ⊢ A→¬B
9. ¬A ⊢ A→ B

10. (A∧¬B)→ B ⊢ A→ B
11. (A↔¬B) ⊢ ¬(A↔ B)
12. ¬(A∧¬B) ⊢ A→ B
13. P→ Q ⊢⊢ ¬Q→¬P [Do both directions]
14. ¬(P→ Q) ⊢⊢ (P∧¬Q) [Do both directions]
15. P ⊢⊢ ¬¬P [Do both directions]
16. ⊢ ¬P→ (P→ Q)
17. ⊢ ¬(A∧¬A)
18. ⊢ (¬A→ A)→ A

B. We’ve seen that if we only have ¬E and ¬I, our proof system is incomplete: we can’t
prove every valid argument to be valid. So we added IP as an additional rule. In the following
questions, we’ll look more closely at what’s needed to get a complete proof system.

1. It turns out that once we add IP into our proof system, we don’t really need ¬I any-
more, because anything we can prove using ¬I can be proven using IP instead (though
again, not the other way around!). The core of ¬I can be expressed as:

A→⊥⊢ ¬A
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Your challenge: prove A→⊥⊢ ¬A using IP instead of ¬I. This shows that we never
really have to use ¬I.

2. Instead of adding IP into our system, a more conservative approach would have been
to add the rule of double negation elimination:

i ¬¬ϕ

ϕ DNE i

That would have been another way to get a complete proof system, but without ren-
dering ¬I idle. The core of IP can be expressed as:

¬A→⊥⊢ A

Your challenge: prove ¬A→⊥⊢ A using DNE (together with our other rules) instead
of IP. This shows we could replace IP with DNE.

3. Another alternative to adding IP into our proof system would have been to add a pair
of rules, one for the Explosion Principle:

i ⊥

ϕ EX i

and another that lets us write down any instance of the Law of Excluded Middle:

ϕ ∨¬ϕ LEM

Your challenge: prove ¬A→⊥⊢A using EX and LEM (together with our other rules)
instead of IP. This shows we could replace IP with this pair of rules. Note: to do this
problem, you’ll have to know how to work with disjunction rules, so read the next
section on the ∨E rule before attempting it.

4.9 Disjunction Rules

Our last connective to deal with is disjunction. The ∨I rule is pretty straightforward. Sup-
pose Alice is a logician. Then certainly Alice is either a logician or a chemist. After all,
to say that Alice is either a logician or a chemist is to say something weaker than to say
that Alice is a logician. In fact, we can weaken the claim however we like. Suppose Alice
a logician. It follows that Alice is either a logician or a kumquat. Equally, it follows that
either Alice is a logician or the earth is flat. Many of these are strange inferences to draw.
But there is nothing logically wrong with them: in each case the conclusion has to be true
if the premise that Alice is a logician is true.

Our disjunction introduction rules implement this idea of arbitrarily weakening a claim:
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m ϕ

ϕ ∨ψ ∨I m

and

m ϕ

ψ ∨ϕ ∨I m

Notice that ψ can be any sentence. So the following is a perfectly kosher use of ∨I:

1 M

2 M∨ ([(A↔ B)→ (C∧D)]↔ [E ∧F ]) ∨I 1

The disjunction elimination rule is slightly trickier. Suppose you know that Alice is either
a logician or a chemist. What can you conclude? Not that Alice is a logician; she might be
a chemist instead. And equally, not that Alice is a chemist; she might be a logician instead.
Disjunctive premises, just by themselves, are hard to work with!

But suppose that we could somehow show both of the following: first, that Alice’s being
a logician implies that she has a PhD; second, that Alice’s being a chemist also implies that
she has a PhD. Then if we know that Alice is either a logician or a chemist, we know that,
whichever she happens to be, she has a PhD. Our disjunction elimination rule ∨E formalizes
this insight:

m ϕ ∨ψ

i ϕ

...

j χ

k ψ

...

l χ

χ ∨E m, i– j, k–l

This is a bit more complicated than our previous rules, but the idea is fairly simple. Suppose
we have some disjunction ϕ ∨ψ and our goal is to prove some claim χ . If we can give two
subproofs, one showing that our goal χ follows from the assumption that ϕ holds, and
another showing that the same conclusion χ also follows from the assumption that ψ holds,
then we can infer χ itself by ∨E. This rule formally implements a proof strategy called
argument by cases: the disjunction ϕ ∨ψ tells us that one of two cases obtains, either ϕ
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holds or ψ does; if it can now be shown that χ must hold in either case, then we can
conclude that χ holds on the basis of the original disjunction.

Notice that the citation for ∨E is quite complex. We have to cite three things: the line
number of the original disjunction, and the two subproofs. As usual, there can be as many
lines as you like between i and j, and as many lines as you like between k and l. Moreover,
the subproofs and the disjunction can come in any order, and do not have to be adjacent.

Some examples will help illustrate the rule. Consider this problem:

(P∧Q)∨ (P∧R) ⊢ P

The premise tells us that either ‘(P∧Q)’ holds or ‘(P∧R)’ holds. But in either case, ‘P’
must hold, so ‘P’ follows from our disjunctive premise. Here’s how this looks as a proof:

1 (P∧Q)∨ (P∧R) Premise

2 P∧Q Assumption

3 P ∧E 2

4 P∧R Assumption

5 P ∧E 4

6 P ∨E 1, 2–3, 4–5

∨E is similar to rules like →I, ↔I, and ¬I, in that it requires temporary assumptions
and subproofs. But it differs in that, unlike the others, it’s an elimination rule! This has an
important consequence for the kind of strategy to use in relation to ∨E. In the case of rules
like→I and ¬I, we always reasoned “from the bottom up,” that is, we reasoned backward
from our goal. E.g. if our goal is to prove a conditional ϕ → ψ , we know to use→I as the
overall strategy, which means assuming ϕ and then proving ψ .

The ∨E rule is the exception to working backwards like this. Here, we have to reason
“from the top down.” That is, if you have a disjunction ϕ ∨ψ as a premise (or as an as-
sumption, or as something you can easily derive from your premises and assumptions), it’s
usually a good idea to prove your goal, whatever it may be, using ∨E as your overall strat-
egy. This means you have to open up two subproofs, and prove your goal χ first from the
left-disjunct ϕ and then from the right-disjunct ψ .

Here’s a more complex example, demonstrating one of the Distributive Laws:

P∨ (Q∧R) ⊢ (P∨Q)∧ (P∨R)
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1 P∨ (Q∧R) Premise

2 P Assumption

3 (P∨Q) ∨I 2

4 (P∨R) ∨I 2

5 (P∨Q)∧ (P∨R) ∧I 3,4

6 (Q∧R) Assumption

7 Q ∧E 6

8 R ∧E 6

9 (P∨Q) ∨I 7

10 (P∨R) ∨I 8

11 (P∨Q)∧ (P∨R) ∧I 9,10

12 (P∨Q)∧ (P∨R) ∨E 1,2-5,6-11

To identify my overall strategy in this case, I did not look at my goal (P∨Q)∧ (P∨R)
and think about what introduction rule I might use to prove it (e.g. ∧I). Rather, I noticed that
my premise P∨ (Q∧R) is a disjunction. And whenever I have a disjunction as a premise
like this (or as an assumption, or as something easily derivable from my premises and
assumptions), I will prove my current goal, whatever it might be, using ∨E as the overall
strategy. So in this case, that means first assuming the left disjunct P of my premise, and
proving my conclusion from that (lines 2–5), and then assuming the right disjunct (Q∧R)
of my premise, and proving my conclusion from that (lines 6-11).

■ Exercises 4.9
A. Prove the following:

1. A→ B ⊢ A→ (C∨B)
2. (B∨A)→C ⊢ A→C
3. (A∧B)∨ (A∧C) ⊢ A
4. A∨B ⊢ B∨A
5. A∨B ⊢ (A→ B)→ B
6. A∨ (B∧C) ⊢⊢ (A∨B)∧ (A∨C)
7. A∧ (B∨C) ⊢⊢ (A∧B)∨ (A∧C)
8. A∨ (B∨C) ⊢ (A∨B)∨C
9. S↔ T ⊢ S↔ (T ∨S)

10. (A∨B)∨C, C↔ B ⊢C∨A
11. (C∧D)∨E ⊢ E ∨D
12. A→C ⊢ (A∨ (B∧C))→C
13. J→ I, L→ (L→ K) ⊢ (L∨ J)→ (I∨K)
14. D→ A, C→ (B∧A) ⊢ (D∨C)→ (B∨A)
15. Z∨M, M→ K ⊢ Z∨K
16. (Z∧K)∨ (K∧M), K→ D ⊢ D
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4.10 Proof strategies

There is no simple recipe for proofs, and there is no substitute for practice. But here are
some strategies to keep in mind.

Work backwards from your goal: look at your goal and try to prove it using the intro-
duction rule for its main operator (e.g.→I, or↔I, or ¬I). This will tell you what assump-
tions to make, and what your new goal is. Now ask what the main operator of that new goal
is, thereby identifying a strategy to prove it, and so on.

For example: if your conclusion is a conditional ϕ → ψ , you should plan to use the→I
as your strategy. This requires opening a subproof in which you assume ϕ and then set ψ

as your new goal. Or if your conclusion is a negated sentence ¬ϕ , plan to use ¬I as your
strategy (which means assuming ϕ and proving a contradiction).

The Exception, ∨E: the one important exception to the strategy of working backwards
involves the ∨E rule. If you have a disjunction ϕ ∨ψ among your premises or assumptions
(or as something that you can easily derive from them), it’s almost always a good idea to
prove your current goal (whatever it may be) by setting up an ∨E proof. That means opening
up two subproofs, one where you show that your goal follows from the assumption of ϕ ,
and another where you show your goal also follows from the assumption of ψ .

Work top down: if neither of the above applies (e.g. your current goal has no main oper-
ator, and you don’t have a disjunction among your premises or assumption on which to do
∨E), see if you can work from the top down by applying a different elimination rule (e.g.
∧E,→E,↔E).

Last resort, Indirect Proof: if you can’t see any way to prove your goal ϕ directly, try an
indirect proof by assuming ¬ϕ and deriving a contradiction. This strategy should only be a
last resort, since Indirect proofs are often longer and more complicated than direct proofs.

Persist. Try different things. If one approach fails, try something else. I’ll never ask you
to prove something that cannot be proven.

Don’t make random assumptions. Finally, never make an assumption unless you have
a strategy in mind for discharging it (i.e. for ultimately closing the subproof that the as-
sumptions opens). That means you should only make an assumption if your strategy is to
use one of the following discharge rules:→I,↔I, ¬I, IP, or ∨E.

Let’s look at one more example. Take the following English argument:

If Guatemala is in Canada, then it is in North America. So if Guatemala is not
in North America, it also isn’t in Canada.

This is intuitively valid, so we should be able to give a proof of it. We can symbolize the
argument as: C→A∴¬A→¬C. Our goal here is to prove a conditional, ‘¬A→¬C’. So we
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use→I as our strategy, meaning we assume ‘¬A’ and set ourselves the new goal of proving
‘¬C’ from that assumption. And now, since ‘¬C’ has a negation as its main operator, we
use ¬I as our strategy, meaning we assume ‘C’ and prove a contradiction from that. Notice
how I reasoned “backwards” from the conclusion in order to discover this strategy. Written
out, the proof looks like this:

1 C→ A Premise

2 ¬A Assumption (for→I)

3 C Assumption (for ¬I)

4 A →E 1, 3

5 ⊥ ¬E 2, 4

6 ¬C ¬I 3–5

7 ¬A→¬C →I 2–6

Notice that this is another instance of our CONTRAPOSITION law: ϕ→ ψ ⊨⊨ ¬ψ→¬ϕ .
We proved an instance of the right-to-left direction of this in §4.8 using IP, and here we’re
proving an instance of the other direction using ¬I.

■ Exercises 4.10
A. The following three proofs are missing their rule citations. Write them in. Additionally,
write down the sequent (i.e. single-turnstile ⊢ statement) that each proof demonstrates.

1 P∧S

2 S→ R

3 P

4 S

5 R

6 R∨E

1 A→ D

2 A∧B

3 A

4 D

5 D∨E

6 (A∧B)→ (D∨E)

1 ¬L→ (J∨L)

2 ¬L

3 J∨L

4 J

5 J∧ J

6 J

7 L

8 ⊥

9 J

10 J



4. NATURAL DEDUCTION FOR TFL 79

B. Prove each of the following:

1. J→¬J ⊢ ¬J
2. Q→ (Q∧¬Q) ⊢ ¬Q
3. P∨Q,¬P ⊢ Q
4. ¬R∨ (P→ Q) ⊢ (R∧P)→ Q
5. ¬F → G,F → H ⊢ G∨H
6. D ⊢ ¬¬D
7. P∧ (Q∨R),P→¬R ⊢ Q∨E
8. ¬C∨ (A→ B) ⊢ (C∧A)→ B
9. C→ (E ∧G),¬C→ G ⊢ G

10. M∧ (¬N→¬M) ⊢ (N∧M)∨¬M
11. (W ∨X)∨ (Y ∨Z),X → Y,¬Z ⊢W ∨Y

C. Show that the following are provably equivalent:

1. ¬(P∧Q) ⊢⊢ ¬P∨¬Q
2. ¬(P∨Q) ⊢⊢ ¬P∧¬Q
3. P∨Q ⊢⊢ ¬(¬P∧¬Q)
4. P→ Q ⊢⊢ ¬Q→¬P
5. P→ Q ⊢⊢ ¬P∨Q
6. ¬(P→ Q) ⊢⊢ P∧¬Q
7. P↔¬Q ⊢⊢ ¬(P↔ Q)
8. P∨Q ⊢⊢ P∨ (¬P∧Q)

D. Prove the following theorems:

1. ⊢ (P→ Q)∨ (Q→ P)
2. ⊢ A∨¬A
3. ⊢ ((P→ Q)→ P)→ P
4. ⊢ ¬A→ (A→ B)
5. ⊢ J↔ [J∨ (L∧¬L)]

4.11 Derived Rules

We have provided introduction and elimination rules for each of our five connectives. To-
gether with IP, this gives us a complete proof system: every valid argument can be proven
using just these few basic rules! In this section, we’re going to introduce some additional
rules to shorten our proofs and make our proof system easier to work with. It’s important to
note at the outset that these additional rules are not necessary. They represent a conservative
extension of our proof system: anything proven using these new rules can also be proven
using just our basic set of rules.

To illustrate the motivation for additional rules, consider the following argument:

Alice is either a logician or a chemist. She is not a chemist. So she is a logician.
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This involves a very natural form of inference called Disjunctive Syllogism. We could sym-
bolize the argument as L∨C,¬C ∴ L, and we then give a natural deduction proof using ∨E
to show that it is valid.

But now consider this: by giving a proof of ‘L’ from ‘L∨C’ and ‘¬C’, we have implicitly
shown that given any sentences of the form ϕ ∨ψ and ¬ψ , it is possible to prove ϕ . If we
substitute the metavariables ϕ and ψ for the sentences ‘L’ and ‘C’ in our proof, we get a
PROOF TEMPLATE for the disjunctive syllogism form of inference:

m (ϕ ∨ψ)

n ¬ϕ

k0 ϕ

k1 ¬ψ

k2 ⊥ ¬E n,k0

k3 ψ IP k0–k3

k4 ψ

k5 ψ ∧ψ ∧I k4,k4

k6 ψ ∧E k5

k7 ψ ∨E m,k− k3,k4− k6

Now, if at any time, in the context of any proof whatsoever, we need to prove some sentence
ϕ from two sentences of the form ϕ ∨ψ and ¬ψ , we can simply “slot in” an instance of
the above proof template. In other words, once we’ve proven one instance of disjunctive
syllogism using our basic rules, we can use that as a template to prove disjunctive syllogism
again in the context of any other proof.

Given this, we might as well just introduce a DERIVED RULE into our proof system that
lets us skip the actual proof and make the disjunctive syllogism inference directly:

m ϕ ∨ψ

n ¬ϕ

ψ DS m, n

DS is a DERIVED RULE in the sense that it can be shown to hold using only the primitive
rules of our system. You can think of derived rules like promissory notes: “I am here jus-
tifying my inference by writing ‘DS’, but I promise that, if you asked for it, I could slot in
a series of steps using only the primitive rules of our natural deduction system.” Derived
rules shorten our proofs, but add no power into our proof system: any proof that appeals to
a derived rule could be expanded into one that only appeals to primitive rules.

In fact, we already added a derived rule to our system in §4.6 when we introduced Reit-
eration. Reiteration is just a shortcut to let us skip the ∧I-plus-∧E trick that I used in steps
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k5 and k6 in the above proof template.4 There are many further useful derived rules we can
add to our proof system. For example, consider the following argument:

If Alice is a chemist, then she has a PhD. Alice doesn’t have a PhD. So she
isn’t a chemist.

This inference pattern is called modus tollens, and we can introduce a derived rule for it:

m ϕ → ψ

n ¬ψ

¬ϕ MT m, n

Again, this adds no power to our system because it is simply a shortcut for a series of steps
involving only primitive rules, as illustrated by the following proof template:

m ϕ → ψ

n ¬ψ

k0 ϕ

k1 ψ →E m, k0

k2 ⊥ ¬E k1, n

k3 ¬ϕ ¬I k0–k2

In §4.10 we gave a seven step proof showing that C→ A ∴ ¬A→¬C is valid. Using our
derived rule MT, we can now shorten this to just four steps:

1 C→ A Premise

2 ¬A Assumption

3 ¬C MT 1, 2

4 ¬A→¬C →I 2–3

Here is a complete list of the derived rules that you’ll be able to use:

4Indeed, in this particular case we could have avoided using the ∧I+∧E trick, and shortened our proof
template, by treating line k+4 as a whole subproof that begins with ψ and ends with ψ (see the end of §4.6).
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Sequent Derived Rule
ϕ → ψ,¬ψ ⊢ ¬ϕ MT
ϕ ∨ψ,¬ψ ⊢ ϕ DS
ϕ ∨ψ,¬ϕ ⊢ ψ DS
ϕ ⊢ ψ → ϕ PMI
¬ϕ ⊢ ϕ → ψ PMI
ϕ → ψ ⊢⊢ ¬ϕ ∨ψ Imp
¬(ϕ → ψ) ⊢⊢ ϕ ∧¬ψ NegImp
¬(ϕ ∧ψ) ⊢⊢ ¬ϕ ∨¬ψ DeM
¬(ϕ ∨ψ) ⊢⊢ ¬ϕ ∧ ¬ψ DeM
ϕ@ψ ⊢ ψ@ϕ Com
⊥ ⊢ ϕ EX
⊢ ϕ ∨¬ϕ LEM
ϕ ⊢⊢ ¬¬ϕ DN
(ϕ # ψ) ⊢⊢ (¬¬ϕ # ¬¬ψ) ⊢⊢ (¬¬ϕ # ψ) ⊢⊢ (ϕ # ¬¬ψ) SDN
¬(ϕ # ψ) ⊢⊢ ¬(¬¬ϕ # ¬¬ψ) ⊢⊢ ¬(¬¬ϕ # ψ) ⊢⊢ ¬(ϕ # ¬¬ψ) SDN

(where # in SDN can be any binary connective, and @ in Com can be any of the three com-
mutative connectives ∨,∧,↔). The way understand this list of derived rules is as follows:

▷ For any sequent ϕ1 . . .ϕn ⊢ ψ matching one from the above list, if ϕ1 . . .ϕn occur on
some earlier lines j1 . . . jn in your proof (none of them inside a closed subproof), then
you may directly infer ψ and justify it by citing the name of the relevant derived rule
followed by the numbers of lines j1 . . . jn.

For example, if you have the sentence ‘P’ on line m in your proof, then you are allowed
to directly infer ‘Q→ P’ with the justification ‘PMI m’ (for “Paradox of Material Implica-
tion”). Or if you have a sentence ‘¬K ∨¬L’ on line m in you proof, you may directly infer
‘¬(K ∧L)’ with the justification ‘DeM m’ (for “DeMorgan’s Law”), or ‘K→¬L’ with the
justification ‘Imp m’, or ‘¬L∨¬K’ with the justification ‘Com m’. Notice that these latter
three are examples of derived rules that hold in both directions, so you could also start with
‘¬(K∧L)’, or ‘K→¬L’, or ¬L∨¬K’ and derive ‘¬K∨¬L’.

The second-to-last derived rule, EX, is the Explosion Principle: it lets you infer any sen-
tence whatsoever from a contradiction. The last one, LEM, lets you write down any instance
of the Law of Excluded Middle ϕ ∨¬ϕ at any point in your proof with the justification
‘LEM’. Here no line number needs to be cited because you’re introducing a theorem.

For another example of these rules in action, consider the following theorem:

⊢ (P→ Q)∨ (Q→ P)

This was one of the exercises in §4.10. Proving this using only basic rules is quite dif-
ficult, as you will have noticed if you tried that exercise. With derived rules, we can
give a much quicker and more intuitive proof of this theorem, by starting out with P∨¬P
as an instance of the Law of Excluded Middle, and then pursuing an ∨E strategy from there:
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1 P∨¬P LEM

2 P Assumption (for ∨E)

3 Q→ P PMI 2

4 (P→ Q)∨ (Q→ P) ∨I 3

5 ¬P Assumption (for ∨E)

6 P→ Q PMI 5

7 (P→ Q)∨ (Q→ P) ∨I 6

8 (P→ Q)∨ (Q→ P) ∨E 1,2-4,5-7

As an exercise, you might try to re-write this proof by “slotting in” a subproof involv-
ing only primitive rules wherever the above proof appeals to a derived rule. This involves
showing how LEM, and the two versions of PMI, can be proven using only primitive rules
of our system.

■ Exercises 4.11
A. The following proofs are missing their citations (rule and line numbers). Add them wher-
ever they are required:

1 W →¬B

2 A∧W

3 B∨ (J∧K)

4 W

5 ¬B

6 J∧K

7 K

1 L↔¬O

2 L∨¬O

3 ¬L

4 ¬O

5 L

6 ⊥

7 L

1 Z→ (C∧¬N)

2 ¬Z→ (N∧¬C)

3 ¬(N∨C)

4 ¬N∧¬C

5 ¬N

6 ¬N∨¬¬C

7 ¬(N∧¬C)

8 ¬¬Z

9 Z

10 ¬C

11 ¬C∨¬¬N

12 ¬(C∧¬N)

13 ¬Z

14 ⊥

15 N∨C
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B. Prove the following using derived rules:

1. (A∨B)→C,¬C ⊢ ¬A
2. E ∨F , F ∨G, ¬F ⊢ E ∧G
3. ¬(A→ (B∨¬C)) ⊢ (B∨C)→ A
4. (Q→ P)→ R,¬Q∨¬S ⊢ S→¬(¬R∨¬S)
5. M∨ (N→M) ⊢ ¬M→¬N
6. A→ (B∨C) ⊢ (A→ B)∨ (A→C)
7. (M∨N)∧ (O∨P), N→ P, ¬P ⊢M∧O
8. (B∧C)∨¬(A→¬D),¬C ⊢ A∧D
9. (X ∧Y )∨ (X ∧Z), ¬(X ∧D), D∨M ⊢M

10. ⊢ (A→ B)∨ (B→ A)

If you want more practice, you can of course also re-do any of the earlier proofs in this
chapter using derived rules.

C. Provide proof templates (like those I provided for DS and MT) that justify the addition
of the De Morgan rules, the Imp and NegImp rules, and LEM as derived rules. If you
don’t want to bother with metavariables, you can just prove instances of the corresponding
sequents, but in any case, be sure to only use primitive rules in your proofs.
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Symbolization in FOL 5

Consider the following argument, which is obviously valid:

Willard is a logician.
All logicians wear funny hats.

∴ Willard wears a funny hat.

But how would be symbolize it in TFL? W could offer the following symbolization key:

L: Willard is a logician.
A: All logicians wear funny hats.
F : Willard wears a funny hat.

and then symbolize the argument as:

L,A ∴ F

But the truth-table test will indicate that this is invalid. What has gone wrong?
The problem is not that we have made a mistake while symbolizing the argument. This is

the best symbolization we can give in TFL. The problem lies with TFL itself! This argument
is not valid in virtue of its truth-functional structure, but rather in virtue of its subsentential
structure. For example, ‘All logicians wear funny hats’ establishes a certain relationship
between being a logician and hat-wearing. But in TFL, the best we can do is symbolize it
as an atomic sentence A. Because TFL doesn’t let us represent any subsentential structure,
we lose the connection between Willard’s being a logician and Willard’s wearing a hat in
the TFL symbolization.

To symbolize arguments like the preceding one, we will have to develop a new logical
language which will allow us to split the atom. That is to say: it will let us represent logically
significant structure inside atomic sentences. This will be the language of first-order logic,
or FOL.

The details of FOL will be explained throughout this chapter, but here is the basic idea
for splitting the atom. A sentence like ‘Willard is a logician’ is internally composed of a
name, ‘Willard’, and a predicate, ‘ is a logician’. In FOL, we’ll use lowercase letters
to symbolize names, and uppercase letters to symbolize predicates. So we might use ‘a’
to symbolize the name ‘Willard’, and ‘L’ to symbolize the predicate ‘ is a logician’.
The whole sentence can then be symbolized as ‘La’, thereby representing the fact that this
atomic sentence is internally composed of a name and a predicate.

A sentence like ‘All logicians wear funny hats’ involves two predicates: ‘ is a lo-
gician’ and ‘ wears funny hats’. It also involves the word ‘all’, which relates the two

86
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predicates. This is called a quantifier, because it tells us something about “quantities” —
in this case that all individuals who are logicians wear funny hats, rather than just some of
them. FOL will have two quantifiers, ‘∀’ and ‘∃’. ‘∃’ will roughly convey ‘There is at least
one thing such that . . . ’ and ‘∀’ will convey ‘Every thing is such that . . . ’.

So FOL has three new ingredients: names, predicates, and quantifiers. And we’ll be able
to use these ingredients to represent the internal structure of atomic sentences. That is the
general idea. But FOL is significantly more complex than TFL, so we’ll build up slowly.

5.1 Names and Predicates

In English, a singular term is a word or phrase that refers to a specific person, place, or
thing. The word ‘dog’ is not a singular term, because there are many dogs. But ‘Fido’ is a
singular term, because it refers to a specific dog. Likewise, the phrase ‘Philip’s dog Fido’ is
a singular term, because it also refers to that specific terrier.

Proper names are a particularly important kind of singular term. These are expressions
that, unlike e.g. ‘Philip’s dog Fido’, pick out individuals without describing them. The name
‘Emerson’ is a proper name, and it alone does not tell you anything about Emerson. Of
course, some names are traditionally given to boys or girls. If ‘Hilary’ is used as a singular
term, you might guess that it refers to a woman. But then again you might be wrong. Indeed,
the name does not necessarily mean that the person referred to is even a person: Hilary might
be a giraffe, for all you could tell just from the name.

In FOL, our NAMES are lowercase letters ‘a’ through to ‘t’. We can also add subscripts if
we want to use some letter more than once. So the following are all names in FOL:

a,b,c, . . . ,s, t,a1, f32, j390,m12

These should be thought of along the lines of proper names in English. But with one differ-
ence. ‘Syracuse’ is a proper name, but it is the name of both a city in New York State and
of a city in Italy. And there are over thirty towns in the US that have the name ‘Springfield’.
We live with this kind of ambiguity in English, allowing context to determine that ‘Syra-
cuse’ is being used to refer to a city in the US rather than to one in Italy. In FOL, we do
not tolerate any such ambiguity. Each name must refer to exactly one thing. (However, two
different names may refer to the same thing, like ‘Mark Twain’ and ‘Sam Clemens’ refer to
the same person.)

As with TFL, we’ll provide symbolization keys. These indicate, temporarily, what object
a name will refer to. So we might offer the following:

e: Elsa
g: Gregor
m: Marybeth

The second ingredient in FOL are PREDICATES. The simplest predicates express proper-
ties of individuals. Here are some examples of English predicates:

is a dog
is a member of Monty Python

A piano fell on
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In general, you can think about predicates as things which combine with names and other
singular terms to make sentences. Conversely, you can start with sentences and make pred-
icates out of them by removing terms. Consider the sentence, ‘Vinnie borrowed the family
car from Nunzio.’ By removing a singular term, we can obtain three different predicates:

borrowed the family car from Nunzio
Vinnie borrowed from Nunzio
Vinnie borrowed the family car from

FOL predicates are capital letters A through Z, with or without subscripts. We might write
a symbolization key for some simple predicates like this:

A: is angry
H: is happy

If we combine our two symbolization keys, we can start to symbolize some English
sentences that use these names and predicates in combination. For example:

(1) Elsa is angry.
(2) Gregor and Marybeth are angry.
(3) If Elsa is angry, then so are Gregor and Marybeth.

Sentence (1) is just symbolized as ‘Ae’. Sentence (2) is a conjunction of two simpler sen-
tences. The simple sentences can be symbolized as ‘Ag’ and ‘Am’. Then we help ourselves
to our resources from TFL, and symbolize the entire sentence as ‘(Ag∧Am)’. This illus-
trates an important point: FOL has all of the truth-functional connectives of TFL! Lastly,
sentence (3) is a conditional, whose antecedent is sentence (1) and whose consequent is
sentence (2). So we can symbolize it as ‘Ae→ (Ag∧Am)’.

We can also use TFL connectives to symbolize sentences that involve COMPOUND PRED-
ICATES, that is, predicates formed out of simpler ones. Consider the following sentence:

(4) Herbie is a white car

It involves the compound predicate ‘ is a white car’. But we can paraphrase the sentence
as a conjunction involving simpler predicates: ‘Herbie is white and Herbie is a car’. Using
the following symbolization key:

W : is white
C: is a car
h: Herbie

we can thus symbolize (4) as ‘(Wh∧Ch)’.
In this case, the compound predicate was formed out of an adjective and a noun. But there

are other ways to form compound predicates too:

(5) Herbie is a car from Germany.
(6) Herbie is a car from Germany that is fast.



5. SYMBOLIZATION IN FOL 89

Sentence (5) involves a compound predicate formed from a noun and the prepositional
phrase ‘from Germany’, and (6) involves a compound predicate formed from a noun, a
prepositional phrase, and the relative clause ‘that is fast’. These can also be symbolized
as conjunctions of simple predications. Using ‘G’ for ‘ is from Germany’ and ‘F’ for
‘ is fast’, (5) can be symbolized as ‘Ch∧Gh’ and (6) as ‘(Ch∧Gh)∧Fh’.

One does occasionally have to be careful when symbolizing compound predicates. Sup-
pose I have a violin that I’ve named ‘Lucy’, and now consider the sentence ‘Lucy is a fake
Stradivarius’. You might think that using ‘c’ for ‘Lucy’,‘F’ for ‘ is fake’ and ‘S’ for
‘ is a Stradivarius’, we can symbolize this as ‘Fc∧ Sc’. But that wouldn’t be right:
‘Fc∧Sc’ entails ‘Sc’, but our English sentence does not entail ‘Lucy is a Stradivarius’! The
word ‘fake’ is what’s called a non-intersective adjective; in a case like this, we ’d have to use
a single FOL predicate, say ‘S’, for the whole English predicate ‘ is a fake Stradivarius’.

■ Exercises 5.1
A. Symbolize the following in FOL:

1. Ada was both a mathematician and a computer scientist.
2. Ada was a mathematician from either England or Wales.
3. Susan will attend the party only if neither Tom nor Ella does.
4. Jen is a talented composer, and Fritz is also a composer, but not talented.
5. Susan and Tom will not both attend the party if Ella does.
6. If Ella attends the party, Susan and Tom both will not attend.

5.2 Quantifiers and Quantifier Scope

Next up are quantifiers. Consider these sentences:

(7) Everyone is happy.
(8) Someone is angry.

Sentence (7) superficially looks like it has the same kind of structure as something like ‘Elsa
is happy’. So you might be tempted to symbolize (7) as ‘He’, with the explanation that ‘e’
is to symbolize ‘everyone’. But that would be a serious mistake.

‘Everyone’ is not a proper name — it doesn’t pick out any particular individual — and so
it should not be symbolized using a name like ‘e’ in FOL. The word ‘everyone’ is rather a
quantifier. Logically, quantifiers behave very differently from names. For example, whereas
‘Either Elsa is happy or Elsa is not happy’ is a necessary truth, ‘Either everyone is happy or
everyone is not happy’ is not a necessary truth. In fact, it’s presumably false: some people
are happy and others are not.

To express claims about every individual in a set, we’ll use the FOL symbol ‘∀’. This
is called the UNIVERSAL QUANTIFIER. A quantifier in FOL always has to be followed by
a variable. FOL variables are lowercase letters ‘u’ through ‘z’, with or without subscripts.
So we could symbolize sentence (7) as ‘∀xHx’. The variable ‘x’ is serving as a kind of
placeholder. The expression ‘∀x’ intuitively means that you can pick anyone and put them
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in as ‘x’. The subsequent ‘Hx’ indicates, of that thing you picked out, that it is happy. So
‘∀xHx’ can be read as saying “every individual x is such that: x is happy.”

There is no special reason to use ‘x’ rather than some other variable here. The sentences
‘∀xHx’, ‘∀yHy’, ‘∀zHz’, and ‘∀x5Hx5’ use different variables, but they are all logically
equivalent, and any of them could be used to symbolize (7).

To symbolize sentence (8), we introduce another new symbol: the EXISTENTIAL QUAN-
TIFIER, ‘∃’. Like the universal quantifier, the existential quantifier requires a variable. Sen-
tence (8) can be symbolized by ‘∃xAx’. You can read ‘∃xAx’ as saying “there is some indi-
vidual x such that: x is angry.” Again, the variable is just a kind of placeholder; we could
just as well have symbolized sentence (8) as ‘∃zAz’ or ‘∃wAw’.

In FOL, quantifiers always range over a DOMAIN of objects. So really, ‘∀xHx’ says that
every object x in the domain is such that x is happy, and ‘∃xAx’ says that some object x in
the domain is such that x is angry. So whenever we symbolize something with a quantifier,
we should also specify a domain of objects in our symbolization key. English quantifiers
like ‘everyone’ and ‘someone’ are used to talk about people, so in this case we can specify
our domain as consisting of people. We’ll look more closely at picking domains later on.

Next, consider the following two sentences:

(9) Someone is a logician and someone is an architect.
(10) Someone is a logician and an architect.

These sentences clearly mean different things, and must therefore receive different sym-
bolizations. Sentence (9) says that there is someone who is a logician, and also that there
is someone (maybe a different person) who is an architect. So it is a conjunction of two
existential sentences. Using the following symbolization key:

domain: people
L: is a logician
A: is an architect

sentence (9) can be symbolized as ‘∃xLx∧∃xAx’.
Notice that we could equally well have symbolized it as ‘∃xLx∧∃yAy’ or ‘∃zLz∧∃vAv’.

As we observed earlier, sentences like ‘∃xAx’ and ‘∃yAy’ that differ only in which variable
gets used are equivalent to each other, so ‘∃xLx∧∃xAx’ is therefore equivalent to‘∃xLx∧
∃yAy’. Using the same variable in both conjuncts, as in ‘∃xLx∧∃xAx’, does not mean that
the person who is a logician is the same as the one who is an architect; and using different
variables, as in ‘∃xLx∧∃yAy’, does not mean it’s a different person. Both of these FOL
sentences just say that there is someone who is a logician, and that there is someone (maybe
the same, maybe different) who is an architect.

Sentence (10), on the other hand, says that there exists some one individual who is both a
logician and an architect. It gets symbolized as ‘∃x(Lx∧Ax)’. You can read this as: there is
some object x in the domain of people such that x is a logician and x is also an architect. The
difference between ‘∃x(Lx∧Ax)’ and the earlier ‘∃xLx∧∃xAx’ has to do with the SCOPE of
the quantifiers.

The way scope works with quantifiers is very similar to it works with negation, which
we discussed in §2.9. In the sentence ‘¬P∧¬Q’, the first ‘¬’ has scope over just the first
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conjunct, and the second ‘¬’ has scope over just the second conjunct. It is the conjunction
symbol ‘∧’ that is the main logical operator. Similarly, in ‘∃xLx∧∃xAx’, the first quantifier
has scope over just the first conjunct, and the second quantifier over just the second conjunct,
with the conjunction ‘∧; functioning as the main logical operator.

On the other hand, in ‘∃x(Lx∧V x)’ the quantifier is the main logical operator, and has
scope over the entire sentence, with the conjunction ‘∧’ occurring inside the scope of the
quantifier. This is similar to how in ‘¬(P∧Q)’, the negation is the main logical operator,
with the conjunction occurring inside its scope. We’ll give a more precise definition of the
notion of scope in relation to quantifiers in §5.10, but the analogy with negation should give
you a working handle for now.

Closely connected to the notion of scope are the notions of FREE and BOUND variables.
A quantifier binds the matching variables that occur in its scope. So in ‘∃x(Lx∧V x)’, the
quantifier ‘∃x’ binds the variable in ‘Lx’ and also the one in ‘V x’, since they both occur
inside its scope. On the other hand, in ‘∃xLx∧∃xAx’, the first quantifier binds the variable
in ‘Lx’, since it occurs in its scope, but does not bind the variable in ‘Ax’ — that variable is
bound by the second quantifier, in whose scope it occurs.

Or compare the following two FOL sentence:

(11) ∀x(Hx∨Wx)
(12) ∀xHx∨Wx

In (11), the quantifier ‘∀x’ is the main operator, and it has scope over the entire sentence;
it therefore binds both occurrences of the variable ‘x’. On the other hand, in (12), the main
operator is the disjunction, with the quantifier only taking scope over the left disjunct. So
here, the quantifier binds the variable in ‘Hx’, but not the one in ‘Wx’. Variables like this,
that are not bound by any quantifier, are said to be FREE VARIABLES. Formulas like (12)
that contain free variables are called OPEN FORMULAS. Formulas like (11) where all the
variables are bound are called CLOSED FORMULAS.

When symbolizing English statements, you should not have any free variables in your
symbolization, i.e. your symbolizations should always be closed formulas. The closed for-
mula (11) could be used to symbolize the English statement ‘Everyone is either happy or
wise’. The open formula (12), on the other hand, says something like: either everyone is
happy, or x is wise. But who is x? Since ‘x’ isn’t a name, it doesn’t refer to any particular
thing, and we can’t determine whether it’s true that x is wise. English statements always
have truth values, whereas open formulas like (12) do not, so open formulas shouldn’t be
used to symbolize English statements.

We could turn (12) into a close formula either by adding parentheses as in (11), or by
adding another quantifier to bind the variable in ‘Wx’, as in ‘∀xHx∨∀xWx’. The latter is a
closed formula, but means something quite different than (11): it can be read as saying that
either everyone is happy, or everyone is wise. The moral is that parentheses are important!
They indicate the scope of quantifiers, and thereby what variables quantifiers binds, which
has a significant impact on meaning.

■ Exercises 5.2
A. Using a domain of people, H for ‘ is happy’, and W for ‘ is wise’, symbolize
the following statements:
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1. Someone is happy, and someone is not happy.
2. Everyone is both friendly and honest.
3. Everyone is either friendly or honest.
4. Everyone is friendly and someone is honest.
5. If everyone is friendly then Liz is happy.
6. Liz is not happy, but someone is.
7. Someone is neither honest nor friendly.
8. Someone is honest but not friendly.
9. If Liz is friendly but not happy, then someone is friendly but not happy.

10. Someone is happy, but not everyone is wise.

B. Which of the following are open formulas, and which are closed formulas? What vari-
ables does each quantifier bind?

1. Wb
2. Wz
3. ∃zWz
4. ∀yWx
5. ∀xHx∧Wx
6. ∀x(Hx∧Wx)
7. ∀x(Hx∧Wy)
8. ∃zHz∨Wb
9. ∃z(Hz∨Wy)

10. ∀x(Hx∨∃y(Wy∧Hx))
11. ∀xHx∨∃y(Wy∧Hx)
12. ∀x(∃y(Hy∧Fx)→∀z(Wz∧Hx))

5.3 Common Quantifier Phrases and Domains

Consider these sentences:

(13) Some dogs are poodles.
(14) Every dog is a canine.

Let’s use the following symbolization key:

Domain: animals
D: is a dog
P: is a poodle
C: is a canine

Sentence (13) gets symbolized using an existential quantifier as ‘∃x(Dx∧Px)’. You can
read this as “there is some object x (in the domain of animals) such that x is a dog and x is
a poodle”, which does capture the intent of (13).

Sentence (14) gets symbolized using a universal quantifier. You might be tempted to to
symbolize it as ‘∀x(Dx∧Cx)’, using a universal quantifier together with a conjunction, just
as we used an existential quantifier together with a conjunction for (13). But that would be
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a mistake: ‘∀x(Dx∧Cx)’ means “every object x (in the domain) is such that x is a dog and
x is a canine”, or more simply, “every object (in the domain) is both a dog and a canine.”
That’s not at all what (14) says!

To see the route towards the correct symbolization, notice that (14) can be paraphrased
as “for any object x in the domain, if x is a dog, then x is a canine.” So (14) gets symbol-
ized using a universal quantifier together with a conditional, as ‘∀x(Dx→Cx)’. As general
guidelines, we have the following:

An English sentence that can be paraphrased as ‘Some F is G’ can be
symbolized as ∃x(Fx∧Gx).

An English sentence that can be paraphrased as ‘Every F is G’ can be
symbolized as ∀x(Fx→ Gx).

The same patterns apply to quantified sentences that involve compound predicates:

(15) Some tame dogs are poodles.
(16) Every wild dog is a canine.

Let’s use ‘T ’ for ‘ is tame’ and ‘W ’ for ‘ is wild’. Recall from §5.1 that in general,
compound predicates get symbolized as conjunctions of the component predicates. So we
can symbolize (15) as ∃x((T x∧Dx)∧Px), with the conjunction ‘(T x∧Dx)’ symbolizing the
compound predicate ‘is a tame dog’. Similarly, (16) gets symbolized as ‘∀x((Wx∧Dx)→
Cx)’, with ‘(Wx∧Dx)’ symbolizing the compound predicate ‘is a wild dog’. This can be
read as: every object x (in the domain) is such that if x is wild and x is a dog, then x is a
canine.

When symbolizing more complex sentences like these, it is useful to distinguish the RE-
STRICTOR PREDICATE from the MAIN PREDICATE. Intuitively, the restrictor predicate tells
you what class of things the sentence says something about — e.g. pet dogs, or wild dogs,
or wild dogs from Africa — and the main predicate then says what is true of some or all
of them (e.g. that they’re poodles, or canines). The general pattern is that, in the case of an
existential quantifier, the restrictor predicate and main predicate always get connected by
a conjunction. And in the case of a universal quantifier, the restrictor predicate and main
predicate always get connected by a conditional:

Some tame dogs︸ ︷︷ ︸
Restrictor

are poodles︸ ︷︷ ︸
Main

∃x( (T x∧Dx)︸ ︷︷ ︸
Restrictor

∧ Px︸︷︷︸
Main

)

Every wild dog︸ ︷︷ ︸
Restrictor

is a canine︸ ︷︷ ︸
Main

∀x( (Wx∧Dx)︸ ︷︷ ︸
Restrictor

→ Cx︸︷︷︸
Main

)

It doesn’t matter how complex the restrictor and main predicate get, the pattern is always
the same. Using A for ‘ is from Africa’ and M for ‘ is a mammal’ we get:

Every wild dog from Africa︸ ︷︷ ︸
Restrictor

is both a mammal and a canine︸ ︷︷ ︸
Main

∀x( (Wx∧ (Dx∧Ax))︸ ︷︷ ︸
Restrictor

→ (Mx∧Cx)︸ ︷︷ ︸
Main

)
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Again: since it’s a universal sentence the restrictor predicate and main predicate get con-
nected by a→. If the quantifier had been ‘Some’ instead of ‘Every’, they would have been
connected by a ∧.

So far we’ve been pretty loose about picking domains. But in practice, picking a domain
can be a delicate matter, and can affect what the correct symbolization of a sentence is. Take
(14) from earlier, ‘Every dog is a canine.’ In a domain of animals, this gets symbolized as
‘∀x(Dx→ Cx)’. But suppose we instead use a domain that consists of just dogs. In this
domain, ‘Every dog is a canine’ can just be symbolized as ‘∀xCx’: every object x in the
domain (of dogs) is a canine. In other words, by restricting our domain to dogs, we no
longer need the explicit restrictor predicate ‘Dx’ in our symbolization.

You could in principle always avoid complex symbolizations by just restricting your do-
main appropriately. A sentence that standardly gets symbolized as ∀x(Fx→ Gx) could just
be symbolized ∀xGx by making the domain consist of whatever things the restrictor predi-
cate Fx is true of. And similarly, a sentence that standardly gets symbolized as ∃x(Fx∧Gx)
could just be symbolized as ∃xGx by picking a domain that consists of whatever things Fx
is true of.

However, this gain in convenience comes at a cost. If we pick a domain of dogs in our
symbolization key for (14), then we can no longer use the same symbolization key to sym-
bolize sentences that talk about things other than dogs. That could be a problem: ‘Every
dog is a canine’ might appear as the first premise in an argument, whose second premise is
‘No pelican is a canine’, and whose conclusion is ‘No pelican is a dog’. Since the second
premise and the conclusion talk about pelicans, we can’t symbolize them using a domain
of just dogs. We’ll instead have to go back to using a larger domain, like all animals, and
revert to the more complex symbolization ∀x(Dx→Cx) for (14).

In practice, we’re going to be fairly restrictive about what domains to use. In order to
standardize symbolizations, you should always pick one of two domains in your symbol-
ization key: either a domain that consists of people, or a domain that consists of things in
general (dogs, people, other animals, plants, stars, numbers etc.). You can use the following
guidelines to determine which domain to pick:

▷ If a sentence or argument contains quantifiers implicitly restricted
to people (like ‘everyone’, ‘someone’, ‘no one’), and no quantifiers,
predicates, or standalone names that concern things other than peo-
ple, you may (but aren’t required to) use a domain of just people.

▷ For any other kind of sentence or argument, use the domain of things.

So in the case of ‘Every dog is a canine’, you should use a domain of things and symbolize
it as ∀x(Dx→Cx). On the other hand, for something like ‘everyone is happy’, you may use
a domain of just people and symbolize it as ∀xHx.

It’s important to notice, though, that you don’t have to use a domain of people to symbol-
ize ‘Everyone is happy.’ This can be symbolized in a domain of things too, by making the
implicit restriction to people (carried by the ‘one’ in ‘everyone’) explicit with an additional
predicate ‘P’ for ‘ is a person’. This would give us the symbolization ‘∀x(Px→ Hx)’.
In fact, using an extra predicate like this is what you would have to do if this sentence oc-
curred as part of a larger sentence or argument that involves reference to things other than
people, and thus requires a domain of things for its symbolization.
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Similarly, if you wanted to symbolize:

(17) Everyone in Chicago is happy.

in a domain of people, you would symbolize it as ∀x(Cx→ Hx), using C for ‘ is in
Chicago’. But if we use a domain of things in general, the implicit restriction to people
carried by ‘everyone’ has to be made explicit by adding ‘Px’, for ‘x is a person’, giving us
‘∀x((Px∧Cx)→ Hx)’. After all, in a domain of things, ∀x(Cx→ Hx) says that absolutely
every thing in Chicago is happy, including every pigeon and tree, for example, whereas that
isn’t required to make (17) true, so we would have to symbolize it as ∀x((Px∧Cx)→ Hx).

One last point: sentence (17) contains the name ‘Chicago’, which refers to a city, so you
might think that our guidelines require a domain of things here. In fact, though, we can use
the domain of people, because we aren’t symbolizing the name ‘Chicago’ in (17) as a name,
but rather treating it as part of the larger predicate ‘ is in Chicago’, which we symbolize
as ‘C’. What the guidelines mean by a “standalone name” is a name that will get symbolized
as a name. It is only if a sentence contains a standalone name (in this sense) of something
other than a person that you shouldn’t use a domain of people any more. The reason is that
every object referred to by a name in our symbolization must be part of the domain.

■ Exercises 5.3
A. Symbolize the following (using a domain of things):

1. Some dogs are cute but not friendly.
2. Some dogs are neither friendly nor cute.
3. Some ancient manuscripts are priceless.
4. Every wealthy artist is happy.
5. Every artist is both wealthy and happy.
6. Every politician from London will get re-elected.
7. All red mushrooms are deadly if eaten.

B. The following contain quantifiers restricted to people, and can be symbolized in either
a domain of people or a domain of things. Symbolize each first in a domain of people, and
then in a domain of things:

1. Someone is wise but not happy.
2. Everyone is both wise and happy.
3. Everyone from Sweden is either wise or happy.
4. Someone from Norway is wise, but not everyone in Scandinavia is wise.

5.4 Quantifiers and Negation

So far we’ve only looked at English quantifier phrases involving ‘every’ and ‘some’. But
our two FOL quantifiers ∀ and ∃ can also be used to symbolize other quantifier phrases in
English. Consider the following sentence:

(18) No one is angry.
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This could be paraphrased as ‘It is not the case that someone is angry’. We can therefore
symbolize it using negation together with an existential quantifier: ¬∃xAx. Interestingly,
though, this is not the only option. If you think about it, (18) could also be paraphrased
as ‘Everyone is not-angry’. So we can also symbolize our sentence using negation and a
universal quantifier: ∀x¬Ax (“every individual x is such that x is not angry”). Indeed, as we
will see, it holds in general that ∀v¬ϕ is logically equivalent to ¬∃vϕ . (Notice that I have
here returned to the practice of using ‘ϕ’ as a metavariable, now over FOL sentences. And
v is a metavariable over FOL variables.) So whenever you have a negation in front of an
existential quantifier in FOL, you can move the negation over the quantifier, and flip the
quantifier into a universal to obtain an equivalent sentence.

A similar pattern emerges if we consider the following.

(19) Not everyone is happy.

This can be symbolized as ¬∀xHx. But again, if you think about it, (19) could be para-
phrased as ‘Someone is not-happy.’ So another way to symbolize this sentence is as ∃x¬Hx.
This illustrates that in general ¬∀vϕ is equivalent to ∃v¬ϕ , meaning that if a negation
occurs in front of a universal quantifier, we can move it over the quantifier and flip the
quantifier into an existential. So we have the following logical laws:1

QUANTIFIER EQUIVALENCE LAWS:

∀v¬ϕ is equivalent to ¬∃vϕ

¬∀vϕ is equivalent to ∃v¬ϕ

Next consider the following examples involving more complex quantifier phrases:

(20) No dog is a poodle.
(21) Not all dogs are poodles.

Sentence (20) says that there does not exist a dog that is a poodle. So it can be symbolized
as a negated existential sentence, ¬∃x(Dx∧Px). Whereas (20) says something which is in
fact false, (21) says something true: that it’s not the case that every dog is a poodle. It can
therefore be symbolized as a negated universal sentence, ¬∀x(Dx→ Px).

Again, though, each of these can be symbolized another way too. Sentence (21) could
also be paraphrased as saying ‘Some dog (i.e. at least one) is a non-poodle’. So instead
of symbolizing it as a negated universal ‘¬∀x(Dx→ Px)’, it could also be symbolized as
an existential: ∃x(Dx∧¬Px)’. Similarly, sentence (20) could also be paraphrased as ‘every
dog is a non-poodle’. So instead of symbolizing it as a negated existential ‘¬∃x(Dx∧Px)’,
it could also be symbolized as a universal: ∀x(Dx→¬Px). In both of these cases, the two
possible symbolizations are equivalent to each other.

We’ll learn how to use natural deduction to prove these equivalences later. But you
can already see the reason for it given the Quantifier Equivalence Laws from above, to-
gether with some of the equivalences we know from TFL. For example, our symbol-
ization ‘¬∀x(Dx → Px)’ of (21) is, by the Quantifier Equivalence Laws, equivalent to

1Notice that this in turns means that ∀vϕ is equivalent to¬∃v¬ϕ . So we don’t really need ∀ in our language
in addition to ∃, we could just define one in terms of the other and always write ¬∃v¬ϕ when we mean ∀vϕ .
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‘∃x¬(Dx→ Px)’. Then, applying the NegImp law sinside the scope of the existential, the
latter is equivalent to ‘∃x(Dx∧¬Px)’, which was our second possible symbolization!

In general, we’ve seen the following patterns:

An English sentence that can be paraphrased as ‘No F is G’ can be sym-
bolized as ¬∃x(Fx∧Gx), or as ∀x(Fx→¬Gx)

An English sentence that can be paraphrased as ‘Not every F is G’ can be
symbolized as ¬∀x(Fx→ Gx) or as ∃x(Fx∧¬Gx).

These patterns also apply if we want to symbolize our earlier examples (18) and (19) in
a domain of things rather than people. In a domain of things, ‘No one (i.e. no person) is
angry’ gets symbolized as ‘¬∃x(Px∧Ax)’ (or alternatively, as ‘∀x(Px→¬Ax)’, i.e. ‘every
person is non-angry’). And ‘Not everyone is angry’ would become ‘¬∀x(Px→ Ax)’ (or
alternatively, ‘∃x(Px∧¬Ax)’, i.e. ‘at least one person is non-angry’). Here is a summary of
the common symbolization patterns we’ve seen in the past few sections:

English Sentence Pattern FOL Symbolization

Some F is G ∃x(Fx∧Gx)

Every F is G ∀x(Fx→ Gx)

No F is G ¬∃x(Fx ∧ Gx)
(Every F is not-G) ∀x(Fx→¬Gx)

Not every F is G ¬∀x(Fx→ Gx)
(Some F is not-G) ∃x(Fx ∧ ¬Gx)

■ Exercises 5.4
A. Symbolize the following:

1. No honest politician is rich.
2. Some honest politicians aren’t rich.
3. No logician is both rich and famous.
4. Not every logician is both rich and famous.
5. No one from Sweden is famous.

5.5 The Utility of Paraphrase

As we’ve seen, it is important to get the structure of the sentences you want to symbolize
right. Sometimes you will be able to move from English directly to a sentence of FOL. Other
times, it helps to paraphrase the sentence one or more times. Each successive paraphrase
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should move from the original sentence closer to something that you can finally symbolize
directly in FOL.

For the next few examples, we will use this symbolization key:

domain: people
B: is a bassist
R: is a rock star
k: Kim Deal

Now consider these sentences:

(22) If Kim Deal is a bassist, then she is a rock star.
(23) If someone is a bassist, then she is a rock star.

These sentences look similar, and even have the same words in the consequent (‘. . . she is
a rock star’), but they mean very different things and will requires different symbolizations.
Sentence (22) can be paraphrased as, ‘If Kim Deal is a bassist, then Kim Deal is a rockstar’.
This can obviously be symbolized as the conditional ‘Bk→ Rk’.

Sentence (23) is more tricky. You might think that it’s a conditional, with an existential
quantifier in its antecedent, and should be symbolized along the lines of ‘∃xBx→ Rx’. This
isn’t correct, however, since the quantifier in this symbolization isn’t binding the variable in
‘Rx’, that is, it’s an open sentence. In the English (23), the pronoun ‘she’ is referring back to
the bassist. You might try to fix it by adding parentheses, giving us ‘∃x(Bx→ Rx)’. This is
now at least a closed sentence, with the quantifier binding both variables. Unfortunately it
doesn’t capture the meaning of (23). Recall that in TFL, (P→ Q) is equivalent (by the Imp
Law) to (¬P∨Q). Similarly, in FOL ‘∃x(Bx→ Rx)’ is equivalent to ‘∃x(¬Bx∨Rx)’. This
will be true as long as there is at least one non-bassist in the world! But that clearly doesn’t
suffice for (23) to be true, so this can’t be the correct symbolization either.

Paraphrase will help us reach our goal. (23) can be rephrased as ‘If someone is a bassist,
then that person is a rock star’. This sentence is not about any particular person, it rather
says something about every person who is a bassist. It can be paraphrased as ‘For any person
x, if x is a bassist, then x is a rockstar’, which can be symbolized as ‘∀x(Bx→ Rx)’. This
is now the correct symbolization of (23). There is a surprising but important upshot to this:
sometimes, English sentences that involve the quantifier ‘someone’ get symbolized using
the universal quantifier ∀ in FOL!2

Next, consider these sentences:

(24) If anyone is a bassist, then Kim Deal will be happy.
(25) If anyone is a bassist, then she is a rock star.

The same words appear as the antecedent in sentences (24) and (25) (‘If anyone is a
bassist. . .’). But again, they mean very different things, and will have to be symbolized
differently. Paraphrase will help us.

Sentence (24) can be paraphrased, ‘If there is least one bassist, then Kim Deal will be
happy’. This is a conditional whose antecedent is an existentially quantified sentence. Using

2Sentence (23) involves what linguists call a “donkey anaphor.” You can read more about this in the Stan-
ford Encyclopedia of Philosophy: https://plato.stanford.edu/entries/anaphora/.

https://plato.stanford.edu/entries/anaphora/
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‘H’ for ‘ is happy’, we can symbolize this as a sentence with a conditional as the main
operator: ‘∃xBx→ Hk’. (Notice that this is not an open sentence: although the quantifier
only has scope over the antecedent, the k in the consequent is a name, not a variable.)

Sentence (25) again has a pronoun ‘she’ referring back to the bassist. It can be para-
phrased as ‘For every person x, if x is a bassist, then x is a rock star’, or just ‘All bassists
are rock stars’. So it gets symbolized as a universally quantified sentence, ‘∀x(Bx→ Rx)’,
just like sentence (23) from earlier. What these examples illustrate is that the English quan-
tifier ‘anyone’ sometimes gets symbolized as an existential quantifier and at other times as a
universal quantifier. To determine which, try paraphrasing the sentence using words besides
‘any’ or ‘anyone’.

■ Exercises 5.5
A. Symbolize the following:

1. If everyone is wealthy, economists are happy.
2. If anyone is wealthy, economists are happy.
3. If someone is wealthy, they are an economist.
4. If a politician is corrupt, they are also dishonest.
5. All violins and cellos are stringed instruments.

B. Below are the syllogistic figures identified by Aristotle and his successors, along with
their medieval names. These formed the foundation of formal logic for over two millennia,
until the end of the 19th century. Formalize each syllogistic figure in FOL.

• Barbara. All G are F. All H are G. So: All H are F
• Celarent. No G are F. All H are G. So: No H are F
• Ferio. No G are F. Some H is G. So: Some H is not F
• Darii. All G are F. Some H is G. So: Some H is F.
• Camestres. All F are G. No H are G. So: No H are F.
• Cesare. No F are G. All H are G. So: No H are F.
• Baroko. All F are G. Some H is not G. So: Some H is not F.
• Festino. No F are G. Some H are G. So: Some H is not F.
• Datisi. All G are F. Some G is H. So: Some H is F.
• Disamis. Some G is F. All G are H. So: Some H is F.
• Ferison. No G are F. Some G is H. So: Some H is not F.
• Bokardo. Some G is not F. All G are H. So: Some H is not F.
• Camenes. All F are G. No G are H So: No H is F.
• Dimaris. Some F is G. All G are H. So: Some H is F.
• Fresison. No F are G. Some G is H. So: Some H is not F.

C. In §5.3 we noted that English sentences of the form ‘No F is G’ can be symbolized
either as ¬∃x(Fx∧Gx) or as ∀x(Fx→¬Gx), and ones of the form ‘Not all F are G’ can be
symbolized as either ¬∀x(Fx→ Gx) or as ∃x(Fx∧¬Gx). Following these templates, give
two different symbolizations for each of the following:

1. No spy is famous.
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2. Not all spies are famous.
3. Not every famous villain is a spy.
4. Not all famous spies are villains.
5. No spy is both famous and a villain.
6. No villain is both famous and a spy.
7. Not every spy is both famous and a villain.
8. Some spies are not villains.

D. For each argument, write a symbolization key and symbolize the argument in FOL.

1. Willard is a logician. All logicians wear funny hats. So Willard wears a funny hat
2. Nothing on my desk escapes my attention. There is a computer on my desk. As such,

there is a computer that does not escape my attention.
3. All my dreams are black and white. Old TV shows are in black and white. Therefore,

some of my dreams are old TV shows.
4. Neither Holmes nor Watson has been to Australia. A person could see a kangaroo only

if they had been to Australia or to a zoo. Although Watson has not seen a kangaroo,
Holmes has. Therefore, Holmes has been to a zoo.

5. No one expects the Spanish Inquisition. No one knows the troubles I’ve seen. There-
fore, anyone who expects the Spanish Inquisition knows the troubles I’ve seen.

6. All babies are illogical. Nobody who is illogical can manage a crocodile. Berthold is
a baby. Therefore, Berthold is unable to manage a crocodile.

5.6 Many-Place Predicates

So far, we have only considered sentences with one-place predicates and one quantifier. The
full power of FOL really comes out when we start to use many-place predicates and multiple
quantifiers, however. Whereas the logic of singly-quantified sentences has been well known
for over two millennia since Aristotle, it took until the work of Gottlob Frege in the late
19th for a logic capable of handling sentences with multiple quantifiers to be developed.
The system of FOL we are here studying is a fragment of the logic Frege developed in his
book Begriffsschrift (1879).

ONE-PLACE PREDICATES concern properties that objects might have. They have one
argument place, or gap, in them. To make a sentence, we simply slot a name into that gap.
Other predicates concern relations between things. Here are some examples of relational
predicates in English:

loves
is to the left of
is in debt to

These are TWO-PLACE PREDICATES: they need to be filled in with two terms in order to
make a sentence. Conversely, if we start with an English sentence containing many singular
terms, we can remove two singular terms, to obtain different two-place predicates. Consider
the sentence ‘Vinnie borrowed the family car from Nunzio’. By deleting two singular terms,
we can obtain any of three different two-place predicates
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Vinnie borrowed from
borrowed the family car from
borrowed from Nunzio

And by removing all three singular terms, we obtain a THREE-PLACE PREDICATE:

borrowed from

Indeed, there is in principle no upper limit on the number of argument places that our pred-
icates may contain.

It’s important to realize that the multiple argument places in a predicate can be filled either
with the same term, or with different terms, and in various different orders. For example,
if we begin with the two-place predicate ‘ loves ’, we can fill the gaps with the
names ‘Karl’ and ‘Imre’ in various different ways, to obtain different English sentences:

(26) Karl loves Imre.
(27) Imre loves Karl.
(28) Karl loves Karl.

In FOL, many-place predicates are symbolized via uppercase letters, just like one-place
predicates. To symbolize the above sentences, we can use the following symbolization key:

domain: people
i: Imre
k: Karl
L: loves

As in the case of one-place predicates, FOL names appear after the predicate letter. So
sentence (26) will be symbolized as ‘Lki’, sentence (27) as ‘Lik’, and sentence (28) as
‘Lkk’. You can think of the FOL predicate letter ‘L’ as having two invisible argument places
after it, into which we can slot the names ‘i’ and ‘k’. The convention is that the first gap
after the predicate letter represents the first gap in the corresponding English predicate, and
the second gap represents the second gap in the English predicate. So since sentence (28)
results from putting ‘Karl’ into the first gap in ‘ loves ’ and ‘Imre’ into the second,
its symbolization in FOL has ‘k’ in the first gap after ‘L’ and ‘i’ in the second.

Another way to put it is that the first gap in the English predicate ‘ loves ’ is for
the agent of the relation — the lover, the person doing the loving — and the second gap is
for the patient, or direct object, of the relation — the beloved, the person who is loved. So
given our symbolization key, the first name in the FOL sentence ‘Lki’ represents the agent,
the lover, and the second name represents the patient, the beloved.

Here are some more sentences that we can symbolize using this key:

(29) Imre loves himself.
(30) Karl loves Imre, but not vice versa.
(31) Karl is loved by Imre.

Sentence (29) can be paraphrased as ‘Imre loves Imre’, and is symbolized by ‘Lii’. Sentence
(30) is a conjunction. We can paraphrase it as ‘Karl loves Imre, and Imre does not love Karl’,
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and so symbolize it as ‘Lki∧¬Lik’. Sentence (31) is in the passive voice, but it can be
paraphrased in the active voice as ‘Imre loves Karl’, and so symbolized as ‘Lik’. Of course,
there are differences of tone between the active and passive voice; but we have preserved
the truth conditions.

The difference between active and passive voice illustrates something important. Suppose
we had instead used the following symbolization key of our predicate ‘L’:

L: is loved by

Now ‘L’ symbolizes an English predicate in the passive voice, meaning that the first gap
now represents the patient, the person who is loved, and the second gap the agent, the
person doing the loving. Using this symbolization key, the FOL sentence ‘Lki’ now means
that Karl is loved by Imre, that is to say, that Imre loves Karl. So Sentence (26) — which
says that Karl loves Imre, i.e. that Imre is loved by Karl — can no longer be symbolized as
‘Lki’, but must be symbolized as ‘Lik’. The overall moral is simple: differences in the order
of names matter.

■ Exercises 5.6
A. symbolize the following using two-place predicates.

1. Tom chased Jerry, and Tom was also chased by Jerry.
2. Tom chased Jerry, but Jerry didn’t chase Tom.
3. If Tai admires Meg, then Meg admires herself.
4. Tom didn’t chase Jerry unless Jerry was chased by Tom.

5.7 Multiple Generality

Now that we have two-place predicates to work with, we can also symbolize sentences that
combine such predicates with quantifiers. Suppose we’re again working with the following
symbolization key:

domain: people
i: Imre
k: Karl
L: loves

Now consider the following sentences:

(32) Everyone loves Imre.
(33) Imre loves everyone.
(34) Imre is loved by everyone

Starting with (32), we could paraphrase this as: every person x is such that x loves Imre.
So here the variable x will now go into the first slot after L, since x is the lover, and the
name i into the second, giving us ∀xLxi. There’s a common mistake students make with
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examples like this. In the English sentence (32), it looks like the quantifier phrase ‘every-
one’ occupies the first argument place of ‘loves’, so students are sometimes tempted to put
a quantifier into the corresponding argument place in the FOL symbolization, producing
something like ‘L∀xi’. However, this is not a grammatical sentence of FOL! In FOL, only
names and variables may occur in the argument places of predicate letters. So again, the
way to symbolize this is as ‘∀xLxi’, with the universal quantifier out front binding a variable
in the first argument place of ‘L’.

Sentence (33) could be paraphrased as: every person x is such that Imre loves x. So here
the variable now goes into the second argument place of ‘L’, giving us the symbolization
‘∀xLix’. As for (34), notice that this is equivalent to (32), so it can also be symbolized as
‘∀xLxi’.

As already mentioned, the real power of FOL lies in its ability to treat sentences with
many-place predicates and multiple quantifiers. Take the following:

(35) Everyone loves someone.

On its most natural interpretation, this sentence says that for every person x, there is some
person y whom x loves. It can therefore be symbolized as ‘∀x∃yLxy’. This would be true,
for example, in a love triangle situation where Karl loves Imre, Imre loves Juan, and Juan
loves Karl (and no one loves anyone else): no matter which person x we consider, we can
find some person y such that x loves y.

However, English sentences like (35) that contain multiple quantifiers are ambiguous.
There is another interpretation of (35) on which it says that every x loves some one particular
person y, a claim that can also be expressed via the following English sentence:

(36) There is someone who is loved by everyone.

Since this now claims that there is some particular person y who is loved by every x, we can
symbolize it as ‘∃y∀xLxy’. This would be false in our earlier love triangle situation, since
there is no lucky individual y who is loved by everyone in that scenario. A situation where
‘∃y∀xLxy’ is true would be one where, for example, Karl loves Imre, Juan loves Imre, and
Imre also loves himself. Now Imre is the lucky individual y who’s loved by everyone.

The two examples we’ve looked at — ‘∀x∃yLxy’ and ‘∃y∀xLxy’ — differ in the order, or
scope, of the two quantifiers: in the first, the universal ∀x has the larger scope (i.e. comes
first, and is the main operator), whereas in the second the existential ∃y has the larger scope.3

As we’ve seen, this difference in scope results in a difference in meaning between these two
FOL sentences. Accidentally switching the scope of quantifiers gives rise to the so-called
quantifier shift fallacy. For example, the following argument is not valid:

Everything is caused by something. (∀∃)
∴ There is some one thing that caused everything. (∃∀)

Using ‘C’ for ‘ caused ’ (and a domain of things), the premise can be symbolized
as ‘∀x∃yCyx’: for every x there exists some y such that y caused x. The conclusion, on the

3Of course we could use different variables: (36) could also be paraphrased as saying that there is some
person x who is loved by every y, and thus symbolized as ∃x∀yLyx instead of ∃y∀xLxy. These FOL sentences
look different, but they are equivalent: in both cases the existential quantifier binds the variable in the second
argument position of L, and the universal quantifier binds the variable in the first argument position. This is
what’s crucial to capturing the meaning of (36).
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other hand, can be symbolized as ‘∃y∀xCyx’: there exists some y such that for every x, y
caused x. The latter is not implied by ‘∀x∃yCyx’. We’ll leave it as an exercise for you to
describe a situation that would make the premise true, but the conclusion false.

Such fallacies, though, arise only when we swap around universal with existential quan-
tifiers. With strings of the same quantifier, the order doesn’t matter. For example, ‘∃x∃yLxy’
and ‘∃y∃xLxy’ would naturally be used to symbolize English sentences ‘there is some-
one who loves someone’ and ‘there is someone who is loved by someone’, respectively.
But, though these differ in nuance, they are true in exactly the same situations; ‘∃x∃yLxy’
and ‘∃y∃xLxy’ are therefore equivalent. Also, to return to a point from §5.2, notice that
‘∃x∃yLxy’ does not require that x and y be different individuals. This sentence, as well as
‘∃y∃xLxy’, would be true in a situation where Imre loves himself (and no one loves anyone
else). After all, that would be a situation where someone loves someone, and also one where
someone is loved by someone.

Similar comments apply to pairs like ‘∀x∀yLxy’ and ‘∀y∀xLxy’: if everyone loves every-
one (as per the first sentence) then it follows that everyone is loved by everyone (as per the
second), and vice versa. So there can be no situation that makes one true but not the other.
And notice that for either to be true, everyone has to, among other things, love themselves.
So both of these imply ∀xLxx, as we’ll be able to show soon using natural deductions.

Lastly, multiply quantified sentences can of course also involve “negative quantifiers.”
For example:

(37) No one loves everyone.
(38) There’s someone who loves no one.

Sentence (37) is the denial of ‘there is someone who loves everyone’; since the latter gets
symbolized as ‘∃x∀yLxy’, sentence (37) gets symbolized as its negation, ‘¬∃x∀yLxy’. Sen-
tence (38) says that there is some person x such that no matter what y we pick, x does not
love y. It therefore gets symbolized as ‘∃x∀y¬Lxy’.

Another way to think about (38) is as saying: there is some x such that there does not
exist any y whom x loves. So we can also symbolize it as ∃x¬∃yLxy’. This illustrates that
the Quantifier Equivalence Laws from §5.2, which govern the movement of negation across
quantifiers, continue to hold in multiply quantified sentences. Similarly, if we start with
‘¬∃x∀yLxy’, which was our symbolization of (37), and move the negation across both quan-
tifiers, we end up with ‘∀x∃y¬Lxy’. This says that for every x there is at least one y whom x
does not love, which is indeed another way to capture the truth conditions of (37).

■ Exercises 5.7
A. Symbolize the following (in a domain of people):

1. Plato admires someone.
2. Everyone admires Plato.
3. If everyone admires Plato, then Plato also admires himself.
4. Everyone loves someone.
5. Someone loves everyone.
6. Everyone is loved by someone.
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7. Someone is loved by everyone.
8. Everyone loves everyone.
9. Someone loves no one

10. No one loves everyone.
11. No one is loved by everyone.
12. Someone is loved by no one.

5.8 Intermediate Steps to Symbolization

Symbolization in FOL gets tricky as the English sentences we want to symbolize become
more complex. In such cases, it’s best to break a symbolization down into intermediate
steps. Take the following increasingly complicated examples:

(39) Every logician admires Marcus.
(40) Carnap admires some philosopher.
(41) Every logician admires some philosopher.
(42) Every logician who is admired by someone admires at least one philosopher.

Let’s use the following symbolization key:

Domain: people
L: is a logician
P: is a philosopher
A: admires
c: Carnap

m: Marcus

Starting with (39), we see that we’re dealing with a complex quantifier ‘every logician’
rather than the simple ‘everyone’, so it’ll be helpful the divide the sentence into a restrictor
predicate a main predicate, as we did in §5.3. The restrictor predicate is ‘logician’, and the
main predicate is ‘admires Marcus’, and these will have to be joined by an → since the
quantifier is universal. So as an intermediate step we get:

∀x(x is a logician→ x admires Marcus)

The antecedent just becomes ‘Lx’. The consequent gets symbolized as ‘Axm’, with the vari-
able x in the admiring-slot and the name m in the admired-slot. So we get:

∀x(Lx→ Axm)

as our final symbolization.
Sentence (40) involves a ‘some’ quantifier, but it occurs at the end of the sentence, in the

direct-objet position of ‘admires’. To symbolize it, it will help to first paraphrase it so that
the quantifier shows up at the beginning: ‘some philosopher is admired by Carnap’. Since
this is an existential sentence, the restrictor and the main predicate will get connected with
an ∧, so our first intermediate step is:

∃x(x is a philosopher∧ x is admired by Carnap)



5. SYMBOLIZATION IN FOL 106

The restrictor gets symbolized as ‘Px’ and the main predicate as ‘Acx’, giving us:

∃x(Px∧Acx)

Next, sentence (41) has a structure similar to (39), except that the main predicate is now
‘admires some philosopher’ rather than simply ‘admires Marcus’:

∀x(Lx→ x admires some philosopher)

Notice that ‘x admires some philosopher’ is just like (40) except with ‘x’ in place of
‘Carnap’. Since we symbolized (40) as ∃x(Px∧Acx), we can symbolize ‘x admires some
philosopher’ as ∃y(Py∧Axy). Here we have to use a different variable, ‘y’, with this existen-
tial quantifier, since we’realready using ‘x’ for the main universal quantifier in the sentence.
Putting it all together we get:

∀x(Lx→∃y(Py∧Axy))

Finally, we get to (42), the most complicated of our four examples. This is a universal
sentence and can be split into restrictor and main predicate as follows:

∀x(x is a logician who is admired by someone→ x admires at least one philosopher)

Let’s consider each part in turn. The restrictor can be paraphrased as: x is a logician and x is
admired by someone. To say that x is admired by someone is to say that someone admires
x, which can be symbolized as ‘∃yAyx’ in our domain of people. This gives us:

∀x((Lx∧∃yAyx)→ x admires at least one philosopher)

as the next intermediate step. Next comes the main predicate: ‘x admires at least one philoso-
pher’. Here ‘at least one’ is an existential quantifier, so let’s rephrase this in a way that puts
this quantifier into the subject position: ‘at least one philosopher is admired by x’. We can
symbolize the latter as ∃y(Py∧Axy), giving us:

∀x((Lx∧∃yAyx)→∃y(Py∧Axy))

as our final symbolization.
We here decided to use the same variable, ‘y’, for the existential quantifiers in the an-

tecedent and the consequent of the conditional. This is ok, because there is no scope overlap
between the two. We can graphically represent the scope of the various quantifiers thus:

scope of ‘∀x’︷ ︸︸ ︷
∀x

(
(Lx ∧

scope of 1st ‘∃y’︷ ︸︸ ︷
∃yAyx )→

scope of 2nd ‘∃y’︷ ︸︸ ︷
∃y(Py∧Axy)

)
Since the scopes of the two ‘∃y’ quantifiers don’t overlap, there is no clash of variables.
That said, to be absolutely safe, it’s good to just pick a different variable for each quantifier
in your symbolization. So the following, where we use ‘∃z’ in the consequent, would be an
equally good, and “safer,” symbolization of (42):

∀x((Lx∧∃yAyx)→∃z(Pz∧Axz))
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Students who are first learning FOL symbolization sometimes want to put all the quanti-
fiers out front, at the beginning of the sentence, perhaps like this:

∀x∃y∃z((Lx∧Ayx)→ (Pz∧Axz))

This is not a correct symbolization of (42), however, and indeed virtually impossible to
make sense of. Avoid doing this. Instead, use the strategy of breaking things down via
intermediate steps, as we’ve done in these examples. By following doing this you will arrive
at a correct symbolization with all the quantifiers in the right places.

■ Exercises 5.8
A. Symbolize the following using two-place predicates. (Note: problem 6 and 7 involve
nouns that express relational notions, so these can be symbolized using the two-place pred-
icates ‘ is an assassin of ’ and ‘ is a friend of ’.)

1. Every doctor cured someone.
2. Every doctor cured a patient.
3. Every student is admired by someone.
4. Every logician is admired by some philosopher.
5. No politician admires everyone.
6. No politician admires every senator.
7. Some famous soprano is admired by every tenor.
8. No self-respecting lawyer admires every judge.
9. All of Caesar’s assassins were friends of Brutus.

10. Some of Caesars advisors knew all of Caesar’s assassins but suspected none of them.
11. Every tenor from Italy is respected by some famous soprano.

5.9 Adding Identity

Consider this sentence:

(43) Pavel owes money to everyone

Let’s use a domain of people, ‘p’ for ‘Pavel’, an ‘O’ for ‘ owes money to ’. We
can then symbolize sentence (43) by ‘∀xOpx’. But this has a (perhaps) odd consequence. It
requires that Pavel owes money to every member of the domain. Since Pavel himself must
be a member of the domain, this entails that Pavel owes money to himself. And maybe we
did not want to say that. Maybe what we meant to say was:

(44) Pavel owes money to everyone else
(45) Pavel owes money to everyone other than Pavel
(46) Pavel owes money to everyone except himself

But we do not have any way of dealing with the italicized words yet. The solution is to add
a new symbol to FOL.
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The symbol ‘=’ will be a two-place predicate, denoting the relation of identity. Since
identity is such a basic logical concept — similar to how e.g. conjunction, negation, or exis-
tential quantification are basic logical concepts — ‘=’ functions as a LOGICAL CONSTANT

in FOL. This means that the symbol ‘=’ has to be interpreted as ‘ is identical to ’;
you can’t assign it a different meaning in a symbolization key.

To highlight the fact that identity is special in being the only logical constant among two-
place predicates, we adopt a different notational convention for it, and write it between two
terms rather than in front of them. This notation will be familiar to you from math, where
you write things like 1

2 = 4
8 . Note that in saying that some objects x and y are identical, we

don’t merely mean that they are very similar, or indistinguishable in the way that e.g. two
cans of Coca Cola are. We mean that they are one and the same object.

To put this to use, suppose we want to symbolize this sentence:

(47) Pavel is Mister Checkov.

Using ‘c’ for the name ‘Mister Checkov’, sentence (47) can be symbolized as ‘p = c’. This
tells us that Pavel and Mister Checkov are one and the same person, and that the names ‘p’
and ‘c’ refer to the same individual.

We can now deal with sentences (44)–(46). All of these sentences can be paraphrased
as ‘Everyone who is not Pavel is owed money by Pavel’. Paraphrasing some more, we get:
‘For all x, if x is not Pavel, then x is owed money by Pavel’. Now that we are armed with
our new identity symbol, we can symbolize this as ‘∀x(¬x = p→ Opx)’.

This last sentence contains the formula ‘¬x = p’. This might look a bit strange, but it just
means that we are negating the entire formula, ‘x = p’. From math, you’re probably familiar
with the notation ‘̸=’ for negated identity, so we’ll also adopt this notational convention
here, though only as a convenient shorthand:

An FOL sentence of the form ¬t1 = t2 can be abbreviated as t1 ̸= t2

Using this notational shorthand, we can rewrite our symbolization as ‘∀x(x ̸= p→ Opx)’.
In addition to sentences that use the words ‘else’, ‘other than’, and ‘except’, identity will

be helpful when symbolizing some sentences that contain the words ‘besides’ and ‘only.’
Consider these examples:

(48) No one besides Pavel owes money to Hikaru.
(49) Only Pavel owes Hikaru money.

Letting ‘h’ name Hikaru, sentence (48) can be paraphrased as, ‘No one who is not Pavel
owes money to Hikaru’. This can be symbolized by ‘¬∃x(x ̸= p∧Oxh)’. Sentence (48)
can be paraphrased as ‘for all x, if x owes money to Hikaru, then x is Pavel’. This can be
symbolized as ‘∀x(Oxh→ x = p)’. In fact, these two symbolizations are equivalent to each
other; and (48) and (49) do seem to express the same claim.

But there is one subtlety here. Our symbolizations imply that anyone who is not Pavel
does not owe money to Hikaru. But (48) and (49) also seem to imply that Pavel does owe
money to Hikaru. To capture this, we can add ‘Oph’ as a conjunct to either symbolization,
giving us e.g. ‘Oph∧ ∀x(Oxh→ x = p)’ as a final symbolization. This, in turn, can be
shortened to ∀x(Oxh↔ x = p).
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Identity can also be used to symbolize claims about how many things there are of a
particular kind. We’ll look at three kinds of claims of this sort.

There are at least. . .
Consider the following ‘at least’ claims:

(50) There is at least one apple
(51) There are at least two apples
(52) There are at least three apples

We’ll use ‘A’ for ‘ is an apple’, and a domain of things. Sentence (50) does not require
identity. It can be adequately symbolized by ‘∃xAx’: there is some apple; perhaps many, but
at least one.

It might be tempting to also translate sentence (51) without identity. But consider the
sentence ‘∃x∃y(Ax∧Ay)’. This says that there is some apple x in the domain and also some
apple y in the domain. Since nothing precludes these from being one and the same apple,
this would be true even if there were only one apple. (Recall here the point from §5.2 that
a difference in variables need not indicate a difference in the objects the variables pick
out.) To make sure that we are dealing with different apples, we need to use identity, and
symbolize (51) as ‘∃x∃y(Ax∧Ay∧ x ̸= y)’.

Sentence (52) requires talking about three different apples. Now we need three existential
quantifiers, and we need to make sure that each will pick out something different:

∃x∃y∃z(Ax∧Ay∧Az∧ x ̸= y∧ y ̸= z∧ x ̸= z)

As you can see, by following this pattern, we can symbolize claims of the sort ‘there are
at least n apples’ for any (finite) number n. Notice that here, as in other examples later on,
we’re allowing ourselves to be a bit sloppy about parentheses: technically, each conjunction
symbol in the above should come with its own associated pair of parentheses, but since any
way of adding them produces an equivalent symbolization, and leaving them out actually
makes things more readable, we’re going to let ourselves omit them.

There are at most. . .
Now consider these sentences:

(53) There is at most one apple
(54) There are at most two apples

Sentence (53) can be paraphrased as, ‘It is not the case that there are at least two apples’.
This is just the negation of sentence (51):

¬∃x∃y(Ax∧Ay∧ x ̸= y)

But sentence (53) can also be approached in another way. It means that if you pick out an
object and it’s an apple, and then you pick out an object and it’s also an apple, you must
have picked out the same object both times. With this in mind, it can be symbolized by:

∀x∀y
[
(Ax∧Ay)→ x = y

]
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The two sentences will turn out to be logically equivalent.
Similarly, sentence (54) can be approached in two equivalent ways. It can be paraphrased

as ‘It is not the case that there are at least three apples’, which is just the negation of (52)
above. Alternatively, we can understand it as saying that if you pick out an apple, and an
apple, and an apple, then you will have picked out the same apple at least once. Thus:

∀x∀y∀z
[
(Ax∧Ay∧Az)→ (x = y∨ x = z∨ y = z)

]
Again, by following this pattern we can symbolize claims of the sort ‘there are at most n
apples’ for any n.

There are exactly. . .
Lastly, there are statements that specify a precise numerical quantity:

(55) There is exactly one apple.
(56) There are exactly two apples.
(57) There are exactly three apples.

Sentence (55) can be paraphrased as ‘There is at least one apple and there is at most one
apple’. This is just the conjunction of (50) and (53) from above:

∃xAx∧∀x∀y
[
(Ax∧Ay)→ x = y

]
But it is perhaps more straightforward to paraphrase sentence (55) as, ‘There is a thing x
which is an apple, and everything which is an apple is just x itself’. Thought of in this way,
we’d symbolize it as:

∃x
[
Ax∧∀y(Ay→ x = y)

]
Similarly, sentence (56) may be paraphrased as, ‘There are at least two apples, and there
are at most two apples’, and thus symbolized as the conjunction of (51) and (54). More
efficiently, though, we can paraphrase it as ‘There are at least two different apples, and
every apple is one of those two apples’. Then we offer:

∃x∃y
[
Ax∧Ay∧ x ̸= y∧∀z(Az→ (x = z∨ y = z))

]
Continuing with this patter, we could symbolize the claim that there are exactly three apples:

∃x∃y∃z
[
Ax∧Ay∧Az∧ x ̸= y∧ x ̸= z∧ y ̸= z∧∀v(Av→ (x = v∨ y = v∨ z = v))

]
and so on, for any number n of apples.

Finally, consider these sentence:

(58) There are exactly two things
(59) There are exactly two objects

It might be tempting to add a predicate to our symbolization key, to symbolize the English
predicate ‘ is a thing’ or ‘ is an object’. But this is unnecessary. Words like ‘thing’
and ‘object’ apply trivially to everything. So we can symbolize either sentence as:

∃x∃y
[
x ̸= y∧∀z(x = z∨ y = z)

]
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Logical Truths Involving Identity
We introduced the symbol ‘=’ as an additional logical constant, i.e. as a logical symbol
whose meaning remains fixed, just like ‘∃’ or ‘¬’. Part of the motivation for treating identity
as a logical constant is that it seems like a very primitive logical concept, much like negation
or existence.

Another, related motivation is that there seem to be certain basic logical truths involving
identity, just like e.g. the LAW OF EXCLUDED MIDDLE from TFL is a basic logical truth
involving negation. One such primitive truth is that everything is identical to itself, which
we can express as:

∀x x = x

This is sometimes called the LAW OF IDENTITY, and it will be a theorem in the system of
natural deduction for FOL that we will develop later.

Another logical truth involving identity sometimes goes by the name of LEIBNIZ’S LAW.4

It says that if x and y are one and the same thing, then x and y must share all their properties.
So if we use ‘D’ for ‘ is a dog’, the following would be an instance of Leibniz’s Law:

∀x∀y
[
x = y→ (Dx↔ Dy)

]
This says that if x and y are identical, then x is a dog iff y is. Similarly, if we use ‘O’ for
‘ owns ’, then another instance of Leibniz’s Law says that if x and y are identical,
then x owns a dog iff y does:

∀x∀y
[
x = y→ (∃z(Dz∧Oxz)↔∃z(Dx∧Oyz))

]
But Leibniz’s Law itself cannot be captured in FOL. Since it makes a claim about all proper-
ties, we’d need to have quantifiers that bind variables in predicate position to really express
Leibniz’s Law in full generality, writing something like:

∀x∀y
[
x = y→∀P(Px↔ Py)

]
A logic that contains quantifiers like ‘∀P’ is said to be a SECOND-ORDER LOGIC. As its
name indicates, FOL is a first-order logic. It can express instances of Leibniz’s Law, con-
cerning particular properties like owning a dog, but it cannot express it in full generality.

One last logical truth involving identity is the following:

∃x x = x

This says that there exists at least one thing. This is obviously a controversial case: you
might think the claim that there exists something (rather than nothing) shouldn’t just be a
truth of logic. But it is a logical truth in FOL, since FOL requires that quantifier domains
have at least one member (see the stipulation in §5.2 above), and it will be a theorem in our
system of natural deduction. Systems of logic that avoid having this as a logical truth, and
allow for empty domains as well as non-referring names, are called FREE LOGICS.

4This law is named after Gottfried Willhelm Leibniz (1646–1716). Leibniz actually endorsed a stronger
claim, which says not only that x and y must share all their properties if they are identical, but also (and more
controversially!) that if x and y share all their properties, then they are identical. Can you think of a potential
example of objects x and y that share all their properties but are still distinct?
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■ Exercises 5.9
A. Using the following symbolization key:

domain: things
A: is a card J : is a jack
B: is black O : is one-eyed
C: is a club W : is wild
D: is a deuce

symbolize each sentence in FOL:

1. All clubs are black cards.
2. There are no wild cards.
3. There are at least two clubs.
4. There is more than one one-eyed jack.
5. There are at most two one-eyed jacks.
6. There are two black jacks.
7. There are four deuces.
8. One-eyed jacks and deuces are wild.
9. If one-eyed jacks are wild, then there are exactly two wild cards.

B. Using the following symbolization key:

domain: things
B: is in Farmer Brown’s field.
H: is a horse.
W : has wings.

symbolize the following sentences in FOL:

1. There are at least three horses.
2. There are at least three things.
3. There is more than one horse in Farmer Brown’s field.
4. There are exactly two horses in Farmer Brown’s field.
5. There is a single winged horse in Farmer Brown’s field, and all other things in the

field are wingless.

5.10 The Syntax of FOL

We’ve been learning to symbolize English sentences in the language of FOL, but it’s time
to be more precise about the grammar, or syntax of FOL. As in the case of TFL (see §2.9),
we will in this section precisely define the notion of a SENTENCE OF FOL.

There are six kinds of symbols that constitute the LEXICON of FOL:
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Predicates A,B,C, . . . ,Z
with subscripts, as needed A1,B1,Z1,A2,A25,J375, . . .

Names a,b,c, . . . , t
with subscripts, as needed a1,b224,h7,m32, . . .

Variables u,v,w,x,y,z
with subscripts, as needed u1,y1,z1,x2, . . .

Connectives ¬,∧,∨,→,↔

Brackets ( , )

Quantifiers ∀,∃

We define an EXPRESSION OF FOL as any string of symbols from the lexicon. Take any
of the symbols in the lexicon of FOL and write them down, in any order, and you have an
expression. But not all expressions are well-formed sentences of FOL, so we’ll need rules
to tell us which expressions count as sentences.

In the case of TFL, in §2.9, we went straight from the statement of the lexicon to the
definition of a sentence of TFL. In FOL, we will have to go via a more indirect route. We
will first define the notion of being a formula of FOL, and then single out the sentences
from this larger class of formulas.

Formulas of FOL
To begin, we define the notion of a term:

A TERM is any name or any variable.

Using this, we can next define the notion of an atomic formula:

1. If R is an n-place predicate and t1, . . . , tn are terms, then Rt1 . . . tn

is an ATOMIC FORMULA.

2. If t1 and t2 are terms, then t1 = t2 is an atomic formula.

3. Nothing else is an atomic formula.

Notice that we are again using metavariables in this definition (see the discussion in §2.9),
albeit cursive ones rather than Greek ones. So here the cursive letter ‘R’ is not itself a
predicate of FOL. Rather, it is a symbol of our metalanguage which we are using to talk
about arbitrary predicates of FOL. Similarly, the cursive ‘t1’ is not a term of FOL, but a
symbol of the metalanguage that we are using to talk about arbitrary terms (i.e. variables or
names) of FOL.

If we let ‘F’ be a one-place predicate,‘G’ a three-place predicate, and ‘S’ a six-place
predicate, then the following all count as atomic formulas of FOL by our definition:

x = a
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Fx
Fa

Gxy2
Sx1x2abyx6

Given the notion of an atomic formula, we can now recursively define the broader class of
FOL FORMULAS as follows:

1. Every atomic formula is a formula.

2. If ϕ is a formula, then ¬ϕ is a formula.

3. If ϕ and ψ are formulas, then (ϕ ∧ψ) is a formula.

4. If ϕ and ψ are formulas, then (ϕ ∨ψ) is a formula.

5. If ϕ and ψ are formulas, then (ϕ → ψ) is a formula.

6. If ϕ and ψ are formulas, then (ϕ ↔ ψ) is a formula.

7. If ϕ is a formula and v is a variable, then ∀vϕ is a formula.

8. If ϕ is a formula and v is a variable, then ∃vϕ is a formula.

9. Nothing else is a formula.

The first few clauses are similar to those from TFL. What’s new are clauses (7) and (8),
which tell us how to construct quantified formulas. Letting ‘F’ be a one-place predicate and
‘R’ a two-place predicate, the following all count as formulas of FOL:

Fc By clause 1
Fx By clause 1
Rxz By clause 1

(Fx→ Rxz) By clause 5
∀x(Fx→ Rxz) By clause 7

(Fy↔∀x(Fx→ Rxz)) By clause 6
∃y(Fy↔∀x(Fx→ Rxz)) By clause 8
∀z∃y(Fy↔∀x(Fx→ Rxz)) By clause 7

Given the above syntactic rules, we can now define what the main operator of an FOL
formula is and, with it, the notion of the scope of an operator:

The MAIN LOGICAL OPERATOR in a formula is the operator that was in-
troduced last in the process of constructing that formula according to the
syntactic rules of FOL.

The SCOPE of an operator in a formula is the subformula for which it is
the main logical operator.

Since quantifiers are a kind of logical operator, this definition covers the scope of quanti-
fiers alongside the scope of truth functional connectives. The scope of the various quantifiers
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in the example formula constructed above can be illustrated as follows:

scope of ∀z︷ ︸︸ ︷
∀z

scope of ∃y︷ ︸︸ ︷
∃y(Fy↔

scope of ∀x︷ ︸︸ ︷
∀x(Fx→ Rxz) )

You may have noticed that our syntactic rules let us put a quantifier in front of any formula,
which lets us construct peculiar formulas like ‘∀xFc’ or ‘∀x∃xFx’. We’ll discuss these be-
low, after we’ve introduced some more terminology.

Sentences of FOL
With our definition of formulas in place, we’re now ready to define the notion of a sentence
of FOL. To see why we need to distinguish sentences from mere formulas of FOL, recall
that logic is concerned with statements: sentences that can be either true or false. And many
formulas are not true or false. For example, consider the formulas Fc and Fx, and suppose
we have the following symbolization key:

domain: people
F : is a philosopher
c: Confucius

The formula ‘Fc’ can be assigned a truth value: we just ask ourselves whether the person
‘c’ refers to is a philosopher. Since Confucius is a philosopher, ‘Fc’ is true. By contrast,
‘Fx’ has no truth value. After all, ‘x’ is just a variable, and doesn’t name any specific object
in the domain.

Of course, if we put an existential quantifier out front to obtain ‘∃xFx’, we now have
something that’s capable of being true or false, since this now says that at least one person
is a philosopher. The point is that we need to bind the variable in ‘Fx’ with a quantifier to
obtain something true or false.

Since we want all sentences of FOL to be either true or false, we need to exclude formulas
like ‘Fx’ from the class of sentences. We can do this by giving a precise definition of the
notions of BOUND and FREE variables that we already informally discussed in §5.2:

An occurrence of a variable v is BOUND iff it falls within the scope of a
matching quantifier ∀v or ∃v.

A FREE variable is a variable that is not bound.

For example, consider the following formula, which has a conditional as its main operator:

(∀x(Ex∨Dy)→∃z(Ex→ Lzx))

The universal quantifier ‘∀x’ has scope over the antecedent ‘∀x(Ex∨Dy)’, so the ‘x’ in ‘Ex’
is bound, but the ‘y’ in ‘Dy’ is free. The scope of the existential quantifier ‘∃z’ is the conse-
quent ‘∃z(Ex→ Lzx)’, so ‘z’ is bound. But the two occurrences of ‘x’ in the consequent are
free: since they occur outside the scope of the universal quantifier ‘∀x’, they aren’t in the
scope of any matching quantifier.

We can now single out the SENTENCES of FOL from among the formulas as follows:
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A SENTENCE of FOL is a formula that contains no free variables. Sen-
tences are also called CLOSED FORMULAS.

An OPEN FORMULA of FOL is a formula that contains at least one free
variable.

Our example ‘(∀x(Ex∨Dy)→∃z(Ex→ Lzx))’ from above is thus an open formula since
it contains free occurrences of the variables ‘y’ and ‘x’. We could transform it into a closed
formula, containing no free variables, by giving ‘∀x’ scope over the entire formula, thereby
binding every occurrence of ‘x’, and adding a quantifier to bind ‘y’, as in for example:

∀x((Ex∨∃yDy)→∃z(Ex→ Lzx))

This is now a sentence of FOL. By requiring that every variable in a sentence be bound, we
ensure that all sentences of FOL are capable of being true or false.

As noted earlier, our syntactic rules also let us construct strange formulas like ‘∀xFc’ and
‘∀x∃xFx’. These are unusual because the formulas the quantifier ‘∀x’ attaches to are in both
cases already closed formulas: neither ‘Fc’ nor ‘∃xFx’ contains any free variables. These
are instances of what is called VACUOUS QUANTIFICATION, cases where a quantifier (‘∀x’
in this case) binds no variables. In general we can say:

A quantifier ∀v or ∃v BINDS every occurrence of the matching variable
v that (i) is in its scope, and (ii) is not within the scope of any “closer”
quantifier ∀v or ∃v itself occurring in the scope of the original quantifier.

To illustrate: in the sentence ‘∀x(Fx→∃xGx)’, the universal quantifier ‘∀x’ only binds the
‘x’ in ‘Fx’, since that is the only occurrence of ‘x’ within its scope that isn’t within the
scope of a closer quantifier. It does not bind the variable in ‘Gx’, because that variable
occurs within the scope of the closer existential quantifier ‘∃x’. It is “closer” in the sense
that ‘∃x’ itself occurs within the scope of the universal ‘∀x’. ‘∃x’ is therefore what binds the
variable in ‘Gx’. And again, in a cases of vacuous quantification like ‘∀xFc’ and ‘∀x∃xFx’,
the quantifier ‘∀x’ binds no variables. These sentences are equivalent to plain ‘Fc’ and
‘∃xFx’, with the vacuous quantifier ‘∀x’ deleted.5

■ Exercises 5.10
A. Determine whether each string below is a grammatical formula. If it is, say what the
main operator is and whether it has any free (unbound) variables:

1. ∀x(Fx)
2. ∀x(Fx∧Gx)
3. ∀y(Fx∧Gx)
4. ∀xFx∧Gx→ Hy
5. (∀x(Fx∧Gx)→ Hy)

5We could perhaps say that in ‘∀xFc’ the quantifier binds the ‘x’ that accompanies the quantifier itself,
since it occurs within its scope. But I prefer to think of occurrences of variables, in the sense at issue in our
definitions, as occurrences in the argument positions of predicates. So ‘∀xFc’ contains no occurrences of ‘x’, in
the relevant sense, for the quantifier to bind, and ‘∀x∃xFx’ contains only one occurrence, bound by ‘∃x’.
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6. ∀x((Fx∧Gx)→ Hy)
7. ∃y∀x((Fx∧Gx)→ Hy)
8. ∀xRxy
9. ∃y∀xRxy

10. ∃x∀xRxx

B. Identify which variables are bound and which are free.

1. ∃xLxy∧∀yLyx
2. ∃x(Lxy∧∀yLyx)
3. ∀xAx∧Bx
4. ∀x(Ax∧Bx)∧∀y(Cx∧Dy)
5. ∀x∃y[Rxy→ (Jz∧Kx)]∨Ryx
6. ∀x1(Mx2↔ Lx2x1)∧∃x2Lx3x2

C. For each of the following formulas, rewrite the formula so that all variables are bound,
or leave it alone if all variables are already bound. You may only change these formulas by
adding and removing parentheses (i.e. you can’t add more quantifiers).

1. ∃xCx→∀yRxy
2. ∀x(∃yRxy→ Rxx)
3. ∀x(∃yRxy→ Ryx)
4. ∀x((∃yRxy∧Fy)→ Rxx)
5. ∃x∀y(∀zLzx→∀u(Jy∧Lzu))
6. ∃x(∀y∀zLzy→∀u(Ju∧Lxu))



Natural deduction for FOL 6

Since sentences in FOL can contain any of the TFL connectives, proofs in FOL will take
over all the natural deduction rules from TFL that we studied in chapter 4, as well as the all
derived TFL rules introduced in §4.11. We will also continue to use the same proof theoretic
notions, in particular, the symbol ‘⊢’. So:

ϕ1, . . . ,ϕn ⊢ ψ

will continue to mean that ψ is provable from ϕ1, . . . ,ϕn, i.e. that there exists a natural
deduction proof which ends with ψ and whose premises, or more generally, whose undis-
charged assumptions, include at most ϕ1, . . . ,ϕn.

What we will need to add to our natural deduction system are rules to govern the new log-
ical symbols that are specific to FOL: the quantifiers ‘∀’ and ‘∃’, and the identity predicate
‘=’. As in the case of TFL, there will be an introduction and an elimination rule associated
with each of these logical symbols. We will of course want to make sure that the rules we
add end up producing a proof system that is both sound and complete:

SOUNDNESS: If ϕ1, . . . ,ϕn ⊢ ψ then ϕ1, . . . ,ϕn ⊨ ψ

COMPLETENESS: If ϕ1, . . . ,ϕn ⊨ ψ then ϕ1, . . . ,ϕn ⊢ ψ

Soundness ensures that if ψ is provable from ϕ1, . . . ,ϕn, then ϕ1, . . . ,ϕn logically entail the
conclusion ψ . And completeness ensures us that if ϕ1, . . . ,ϕn logically entail the conclusion
ψ , then ψ is also provable from premises ϕ1, . . . ,ϕn. We will formally define the concept of
logical entailment for FOL in Chapter 7.

As in the case of TFL, we won’t demonstrate that our proof system is in fact sound and
complete — this would require a meta-logical proof, a proof about our proof system. You’ll
just have to take my word for it that soundness and completeness hold for our system. The
important point for our purposes is that, due to the soundness of our proof system, we can
use proofs to show that arguments are valid: if we can give a proof of a conclusion ψ from
some premises ϕ1, . . . ,ϕn, then we can be sure that the premises entail that conclusion, and
that the argument ϕ1, . . . ,ϕn ∴ ψ is therefore valid.

Similarly, we will continue to write:

⊢ ϕ

to mean that ϕ is a THEOREM of our proof system, i.e. a sentence that is provable using no
premises, or undischarged assumptions. Given soundess, theorems of our proof system are
guaranteed to be logical truths, so we can also use natural deduction proofs to show that
something is a logical truth.

118
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6.1 Universal elimination

The elimination rule for the universal quantifier has a very simple idea behind it: from the
claim that everything is F, you can infer that any particular thing is F. You name it; it’s F.
So from ‘∀xFx’ we can infer ‘Fa’ and ‘Fb’ and ‘Fc’, and so on. Similarly with two-place
predicates:

1 ∀xRxd

2 Rad ∀E 1

We obtained line 2 by deleting the universal quantifier ‘∀x’ to get ‘Rxd’ and replacing the
free occurrence of ‘x’ in the latter with ‘a’. Equally, the following is fine:

1 ∀xRxd

2 Rdd ∀E 1

Here we obtained line 2 by deleting the universal quantifier to get ‘Rxd’ and replacing the
free occurrence of ‘x’ with ‘d’. We could have done the same with any other name we
wanted: ‘b’, ‘c’, ‘e’ etc. The idea is simple: if, as per line 1, everything bears relation R to
d, then a does, and so does d itself, and so does b or c, or any other thing.

Both ‘Rad’ and ‘Rdd’ are said to be instances of the quantified sentence ‘∀xRxd’, as are
‘Rbd’, ‘Rcd’, ‘Red’ and so on. In general, this notion is defined as follows:

Given a universally quantified FOL sentence ∀vϕ(. . .v . . .) its IN-
STANCES are all those FOL sentences ϕ(. . .c. . .) that are obtained by
deleting the quantifier ∀v and replacing every free occurrence of the
matching variable v in ϕ(. . . v . . . ) with some name c.

The universal elimination rule ∀E then just says that from a universal sentence you may
infer any of its instances:

m ∀vϕ(. . .v . . .)

ϕ(. . .c. . .) ∀E m

Here, as well as in the definition of the notion of an instance, we are using the notation
ϕ(. . .v . . .) to represent any FOL formula ϕ that contains zero or more free occurrences of
the variable v, and ϕ(. . .c. . .) to represent the result of replacing every free occurrence of
the variable v in that formula with some name c.1

To take a more complex example, if we begin with the universally quantified sentence:

∀x(Rax∧∃yRxy)
1We allow for the case where ϕ(. . .v . . .) contains no free occurrences of v to cover cases of vacuous

quantification. For example, from ‘∀x∃xFx’ we can infer ‘∃xFx’ by ∀E. See 5.10 for discussion of vacuous
quantification and definitions of free and bound variables.
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we first delete the universal quantifier to get ‘(Rax∧ ∃yRxy)’, and then replace the free
occurrences of ‘x’ in this formula with a name. So the following both count as instances of
‘∀x(Rax∧∃yRxy)’, and can therefore be inferred from it by ∀E:

Raa∧∃yRay
Rab∧∃yRby

We get the first by replacing the variable ‘x’ with the name ‘a’, and the second by replacing
‘x’ with ‘b’. By contrast, the following are not instances:

Rab∧∃yRxy
Rac∧∃yRdy

The first isn’t because we forgot to replace the second occurrence of ‘x’ with the name
‘b’ (thereby leaving this ‘x’ as a free variable), and the second isn’t because we replaced
different occurrences of ‘x’ with different names. Again, the important point is that when
using ∀E, the sentence you infer must be an instance of the universally quantified sentence
you applied the rule to.

It’s also important to emphasize that (as with every elimination rule) you can only apply
the ∀E rule when the universal quantifier is the main logical operator. So the following is
not a legitimate use of ∀E:

1 ∀xBx→ Bc

2 Bb→ Bc No! Illegitimate use of ∀E 1

This is illegitimate because ‘∀x’ is not the main logical operator on line 1. If line 1 had
instead been ‘∀x(Bx→ Bc)’, then the quantifier would have been the main operator, and it
would have been legitimate to infer ‘Bb→ Bc’.

Another way to put it is that this use of ∀E is illegitimate because ‘Bb→ Bc’ is not an
instance of ‘∀xBx→ Bc’. This is because the notion of an instance only applies to sentences
that have a quantifier as their main operator. It just doesn’t make sense to talk about the
“instances” of ‘∀xBx→ Bc’, because this sentence has a conditional as its main operator,
and conditionals do not have instances. By contrast, ‘∀x(Bx→ Bc)’ does have a quantifier
as its main operator, and ‘Bb→ Bc’ is one of its instances, so we can infer it via ∀E.

Using this rule, we can now show that the following argument that we looked at way back
in §1.1 is valid:

All rabbits are mammals.
Bugs Bunny is a rabbit.
∴ Bugs Bunny is a mammal.

First, we provide the following FOL symbolization (using the obvious symbolization key):

∀x(Rx→Mx)
Rb
∴ Mb

And then we can give a simple natural deduction to show that the conclusion follows:
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1 ∀x(Rx→Mx) Premise

2 Rb Premise

3 Rb→Mb ∀E 1

4 Mb →E 3, 2

6.2 Existential introduction

The idea behind the existential introduction rules is again very simple: from the claim that
some particular thing is F, you can infer that there exists at least one thing that is F. So we
ought to allow:

1 Raa

2 ∃xRax ∃I 1

Here, we have replaced just one occurrence of the name ‘a’ with a variable ‘x’, and then
existentially quantified over it. Equally, we would have done this:

1 Raa

2 ∃xRxx ∃I 1

Here we have replaced both occurrences of the name ‘a’ with the variable ‘x’, and then ex-
istentially generalized. Both kinds of inferences are fine: if Narcissus loves himself, ‘Lnn’,
then we can infer that there exists someone who loves themselves, ‘∃xLxx’, but we can also
infer that there exists someone who Narcissus loves, ‘∃xLnx’, and that there is someone
who loves Narcisuss, ‘∃xLxn’. All can be inferred from ‘Lnn’ by ∃I.

Another way to put this is to note that ‘Lnn’ is an instance of each of the quantified
sentences ‘∃xLxx’, ‘∃xLnx’, ‘∃xLxn’. The notion of an instances as applied to existential
sentences is the same as it is for universal ones:

Given any existentially quantified FOL sentence ∃vϕ(. . .v . . .) its IN-
STANCES are all those FOL sentences ϕ(. . .c. . .) that are obtained by
deleting the quantifier ∃v and replacing every free occurrence of the vari-
able v in ϕ(. . .v . . .) with some name c.

The existential introduction rule ∃I then just says that from a sentence containing one or
more occurrences of a name c, we may infer any existential sentence of which that original
sentence is an instance:

m ϕ(. . .c. . .)

∃vϕ(. . .v . . .) ∃I m
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To take a slightly more complex example, from:

Fa∧∀yRay

we could infer any of the following using ∃I:

∃x(Fx∧∀yRay)
∃x(Fa∧∀yRxy)
∃x(Fx∧∀yRxy)

because ‘Fa∧∀yRay’ is an instance of any of these: in each case, we delete the quantifier
‘∃x’, obtaining a formula with free occurrences of ‘x’, and then replace those occurrences
with the name ‘a’ to get ‘Fa∧∀yRay’. The takeaway, again, is that with ∃I we an generalize
on just one occurrence of ‘a’, or on both.

On the other hand ‘∃x(Fx∧∀yRxy)’ could not, for example, be inferred from:

Fa∧∀yRby

because this is not one of its instances. What’s gone wrong here is that we tried to generalize
on two different names, ‘a’ and ‘b’, at once, which isn’t allowed.

What we could have done instead is to generalize on each of the two names separately,
via two successive uses of ∃I:

1 Fa∧∀yRby Premise

2 ∃x(Fx∧∀yRby) ∃I 1

3 ∃z∃x(Fx∧∀yRzy) ∃I 2

This is fine because line 1 is an instance of line 2, and line 2 is in turn an instance of line 3.
It’s important to notice that in moving from line 2 to line 3 here, it was essential that we

introduced an existential quantifier involving a new variable ‘z’, which did not yet appear in
line 2. The following would not have been legitimate:

1 Fa∧∀yRby Premise

2 ∃x(Fx∧∀yRby) ∃I 1

3 ∃y∃x(Fx∧∀yRyy) illegitimate use of ∃I 2

The formula on line 3 involves unwanted capture: we replaced the name ‘b’ in 2 with the
variable ‘y’ and added a matching existential quantifier ‘∃y’ to the front, but the newly
added variable ‘y’ is bound (or captured) by the quantifier ‘∀y’ that already occurred in the
formula, rather than by our newly added quantifier ‘∃y’.2 Put another way: this attempted
use of ∃I is illegitimate because 2 is not an instance of 3. If we delete the quantifier ‘∃y’
from 3 we are left with ‘∃x(Fx∧∀yRyy)’ and this contains no free occurrences of ‘y’ which

2In fact, ‘∃y∃x(Fx∧∀yRyy)’ is a case of vacuous quantification, since ‘∃y’ binds no variables, see 5.10.
This isn’t to say that vacuously quantified sentences can never be inferred by ∃I: from ‘Fa’ we can infer ‘∃xFa’
by ∃I because the former is, technically, an instance of the latter.
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we could replace with the name ‘b’ to get ‘∃x(Fx∧∀yRby)’. An easy way to avoid unwanted
capture is to always use a new variable, one that does not already occur in the formula to
which ∃I is being applied, as in the earlier example where we used ‘∃z’ instead of ‘∃y’.

Here’s a simple proof that combines our two new quantifier rules to show that
∀xFx,∀y(Fy→ Gy) ∴ ∃z(Gz∧Fz) is valid:

1 ∀xFx Premise

2 ∀y(Fy→ Gy) Premise

3 Fa ∀E 1

4 Fa→ Ga ∀E 2

5 Ga →E 4, 3

6 Ga∧Fa ∧I 5, 3

7 ∃z(Gz∧Fz) ∃I 6

Notice that from line 1 I could have inferred some other instance by ∀E instead, like ‘Fb’,
and similarly, from line 2 I could have inferred any other instance, like ‘Fc→ Gc’. But if
I had used different names in the two instances like this, I could then not have applied→E
to them. So although ∀E lets you infer any instance, in the context of a proof you’ll usually
have to infer some specific instance.

■ Exercises 6.2
A. For each of the following FOL sentences, determine what it’s a-instance and its b-
instance are:

1. ∀x(Fx∧Gx)
2. ∃x(Fx∧Gx)
3. ∀x(Fx→∃yRyx)
4. ∃x∀yLxy
5. ∀x(Rxa→∃y(Rxy∧Ryx))
6. ∃x(Lbx↔ Lxa)
7. ∀xRxa→∃yRby

B. Given natural deduction proofs for the following (for these you’ll only have to use ∀E
and ∃I, in addition to TFL rules of course):

1. ∀x∀yRxy ⊢ Raa∧Rab
2. ∀x(Fx→∃yGy) ⊢ ∀xFx→∃yGy
3. ∀xRax,∀x∀y(Rxy→ Ryx) ⊢ Rba
4. ∀x(Fx∧¬Gx),(Gc∨Hd) ⊢ (Hd∧Fd)
5. ∀x(Fx∧Gx),∀yHy ⊢ ∃z(Hz∧Gz)
6. ∀xFx,∀y(Fy→ Gy) ⊢ ∃x(Gx∧∃yFy)
7. ∀x(Fx→∀yGy),Fc ⊢ ∃x(Fx∧Gx)
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8. ∀x∀yRxy ⊢ ∃xRxx
9. ∀x(Fx→ Gx) ⊢ ∀xFx→∃yGy

10. ∀xRxx ⊢ ∃x∃yRxy
11. ∃xFx→∀yGy ⊢ ∀zFz→∃zGz
12. ∀x(Fx→ Gx),¬Gc ⊢ ∃x∃y(¬Fx∨Hy)
13. ⊢ ∃x(Fx∨¬Fx)

6.3 Universal introduction

Suppose you had shown of each particular thing that it is F (and that there are no other
things to consider). Then you would be justified in claiming that everything is F. This could
be used to motivate the following proof rule: if you had established each and every instance
of ‘∀xFx’ holds, then you can infer ‘∀xFx’.

Unfortunately, that rule would be utterly unusable. To establish every single instance of
‘∀xFx’ would require proving ‘Fa’, ‘Fb’, . . ., ‘F j2’, . . ., ‘Fr791’, . . . and so on. Since there
are infinitely many names in FOL, this process would never end! So we need to be more
cunning in coming up with our rule for introducing universal quantifiers.

We can motivate our rule by considering the following:

∀x(Fx∧Gx) ∴ ∀xFx

This argument is obviously valid: if everything is both F and G, then everything is F . But
how could we prove this? Suppose we begin a proof like this:

1 ∀x(Fx∧Gx) Premise

2 Fa∧Ga ∀E 1

3 Fa ∧E 2

We have proven ‘Fa’, an instance of the conclusion ‘∀xFx’ that we’re aiming for. But of
course, nothing stops us from using ∀E in combination with ∧E in the very same way to
prove ‘Fb’, ‘Fc’, . . ., ‘F j2’, . . ., ‘Fr791, . . ., and so on until we run out of space, time, or
patience. So it’s clear that from our premise, we could in principle prove Fc for any name
c, that is, we could in principle prove every instance of our goal ‘∀xFx’. So we should be
entitled to infer ‘∀xFx’ by ∀I. It’s just that we can’t actually prove every instance, since our
proof would never end.

This leads to the following idea: we should be allowed to infer the universal sentence
‘∀xFx’ by the rule of ∀I if we are able prove an arbitrary instance Fc, one that involves
some arbitrary name c. For if the name c is truly arbitrary, then it doesn’t matter that we
specifically proved this particular instance Fc — we could have picked any other name
instead, and thereby proven any other instance of the universal sentence we’re aiming for.

Our universal introduction rule ∀I implements this idea via a “flagged subproof”:
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m c Flag
...

n ϕ(. . .c. . .)

∀vϕ(. . .v . . .) ∀I m–n

The Flag-ed name cmay not occur outside the subproof (including
in the inferred sentence ∀vϕ(. . .v . . .) itself!)

The Flag step on line m is just a way of officially signaling that the name c is being
introduced as an arbitrary name in the proof, one that we’ll use to prove an arbitrary
instance of the universal sentence ∀vϕ(. . .v . . .) that we are aiming for. Our proof that
∀x(Fx∧Gx) ⊢ ∀xFx can now be presented as follows:

1 ∀x(Fx∧Gx) Premise

2 a Flag

3 Fa∧Ga ∀E 1

4 Fa ∧E 3

5 ∀xFx ∀I 2–4

Again, the idea is that although we only proved the one instance, ‘Fa’, we are allowed to
infer the universal sentence ‘∀xFx’ because that instance was arbitrary — we could have
just as easily proven any other instance we pleased.

The Flag-ing constraint listed at the bottom of the rule — that the Flag-ed name may
not occur outside the subproof — is crucial, because it is what insures that the name we’ve
picked is truly arbitrary.3 To see the constraint in action, consider this terrible argument:

Everyone loves Beyonce. Therefore everyone loves themselves.

This argument is obviously not valid. We might symbolize it as:

∀xLxb ∴ ∀xLxx

Now, suppose we tried to offer the following “proof” to vindicate this argument:

1 ∀xLxb Premise

2 b Flag

3 Lbb ∀E 1

4 ∀xLxx Illegitimate use of ∀I!
3This constraint is actually more restrictive than necessary. It would be alright if the Flag-ed name occurred

outside the subproof, as long as it doesn’t occur in any earlier premise or undischarged assumption (or in the
universal sentence to be proven). But the constraint as we’ve formulated it has the advantage of being concise
and easier to remember.
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It would be bad if this proof were legitimate, since the conclusion doesn’t follow. What
makes it illegitimate is that the Flag-ed name ‘b’ occurs outside the subproof, namely in our
premise on line 1. Since ‘b’ occurs in the premise, it doesn’t have the status of an arbitrary
name, and the sentence ‘Lbb’ we proved on line 3 doesn’t qualify as an arbitrary instance of
our goal ‘∀xLxx’: we could not have proven any other instance of ‘∀xLxx’, like e.g. ‘Laa’
or ‘L j j’, from our premise.

Notice that the flagged constant also cannot occur in the universal sentence that’s being
inferred via ∀I, since it occurs outside the subproof. Consider the following, equally terrible
argument:

Everyone loves themselves. Therefore everyone loves Beyonce.

which we could symbolize as: ∀xLxx ∴ ∀xLxb. Now suppose we tried to prove it as follows:

1 ∀xLxx Premise

2 b Flag

3 Lbb ∀E 1

4 ∀xLxb illegitimate use of ∀I

Again, this proof had better not be legitimate, since the conclusion does not follow. And it
isn’t legitimate: the Flag-ed name ‘b’ occurs outside of the subproof, in the inferred univer-
sal sentence ‘∀xLxb’. Again, although ‘Lbb’ is an instance of ∀xLxb, it doesn’t qualify as
an arbitrary instance because we could not have proven any other instance of ‘∀xLxb’ —
like e.g. ‘Lab’ or ‘L jb’ — from our premise.

For an example of a correct use of ∀I, consider how we might prove that ∀z(Gz→ Gz) is
a theorem. To prove this, we have to open up a flagged subproof inside of which we prove
some arbitrary instance of this sentence, such as ‘Gd→ Gd’, as follows:

1 d Flag

2 Gd Assumption (for→I)

3 Gd Reit 2

4 Gd→ Gd →I 2–3

5 ∀z(Gz→ Gz) ∀I 4

The constraints on the legitimate application of ∀I are met, since the name ‘d’ does not occur
outside the subproof. Here ‘Gd→ Gd’ qualifies as an arbitrary instance of ‘∀z(Gz→ Gz)’:
we could just as well have flagged some other name, say ‘a’, and instead proved the instance
‘Ga→ Ga’ using that name. There was nothing special about ‘d’.

■ Exercises 6.3
A. Give proofs for the following:
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1. ∀x∀y(Gy→ Fx) ⊢ ∀x(∀yGy→ Fx)
2. ∀x(Fx→ Gx) ⊢ ∀xFx→∀xGx
3. ∀x(Fx∧Gx) ⊢ ∀x(Fx∧Ga)
4. ∀xFx∨∀xGx ⊢ ∀x(Fx∨Gx)
5. ∀xLxx ⊢ ∀x∃yLxy
6. ∀x∀yLxy ⊢ ∀xLxx
7. ∀x∀y(Rxy→¬Ryx) ⊢ ∀x¬Rxx
8. ¬∃x(Fx∧Gx) ⊢ ∀x(Fx→¬Gx)
9. ∀x(Fx→∀yGy) ⊢ ∀x∀y(Fx→ Gy)

10. ∀x∀y(Rxy→ Ryx),∀x∀y∀z((Rxy∧Ryz)→ Rxz) ⊢ ∀x∀y∀z((Rxy∧Rxz)→ Ryz)
11. ¬∀xFx ⊢ ∃x¬Fx

6.4 Existential elimination

Suppose we know that something is F. The problem is that simply knowing this does not tell
us which particular thing is F. So from ‘∃xFx’ we cannot immediately infer ‘Fa’, or ‘Fd’,
or any other instance of the sentence. What can we do? How can we deduce anything from
existential premises?

Well, suppose we know that something is F, and that everything which is F is G. In
English, we might pursue the following line of reasoning:

Since something is F, there is some particular thing which is F. We do not know
anything about it, other than that it’s F, but for convenience, let’s call it ‘Obbie’.
So: Obbie is F. Since everything which is F is G, it follows that Obbie is G. But
since Obbie is G, it follows that something is G. And nothing depended on
which object, exactly, Obbie was. Therefore, something is G.

We can capture this reasoning pattern in a proof as follows:

1 ∃xFx Premise

2 ∀x(Fx→ Gx) Premise

3 Fo Assumption (flag o)

4 Fo→ Go ∀E 2

5 Go →E 4, 3

6 ∃xGx ∃I 5

7 ∃xGx ∃E 1, 3–6

Breaking this down: we started by writing down our premises. At line 3, we then made an
additional assumption: ‘Fo’. The idea here is that premise 1 tell us that something is an F .
So on line 3 we introduce some arbitrary name ‘o’ for that thing, Flag it as arbitrary to the
right, and write down the corresponding instance of the existential premise 1. The name we
picked is arbitrary, since we’ve assumed nothing about the object named by ‘o’ other than
that the predicate ‘F’ is true of it. On the basis of the assumption Fo, we can then establish
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‘∃xGx’. Since nothing depended on which specific object ‘o’ names, our reasoning pattern
is perfectly general: we could equally well have proven ‘∃xGx’ by using any other name on
line 3. We can therefore discharge the assumption ‘Fo’ on line 3, and simply infer ‘∃xGx’
on its own.

Putting this together, we obtain the existential elimination rule (∃E):

m ∃xϕ(. . .x. . .)

i ϕ(. . .c. . .) Assumption (flag c)
...

j ψ

ψ ∃E m, i– j

The Flag-ed name cmay not occur outside the subproof (including in the
original existential ∃xϕ(. . .x. . .) and the inferred sentence ψ!)

So in general, to prove some sentence ψ from an existential sentence ∃xϕ(. . .x. . .), what
we do is flag some arbitrary name c, assume the c-instance of the existential sentence, and
then prove our goal ψ from that instance. Finally, we discharge our assumption and infer ψ

on its own via ∃E.
As with universal introduction, the Flag-ing constraint on the name c that’s listed at the

bottom is very important.4 To see why, consider the obviously bad argument:

Borges is a librarian. Someone is not a librarian. So Borges is both a librarian
and not a librarian.

We might symbolize this as follows:

Lb,∃x¬Lx ∴ Lb∧¬Lb

This is clearly a terrible argument: it presumes that the “someone” who is not a librarian
according to the second premise is the individual Borges mentioned in the first premise
(which can’t be, since Borges is a librarian and the “someone” from premise 2 isn’t). Now,
suppose we tried to offer the following “proof” to vindicate this argument:

1 Lb Premise

2 ∃x¬Lx Premise

3 ¬Lb Assumption (flag b)

4 Lb∧¬Lb ∧E 1, 3

5 Lb∧¬Lb No! Illegitimate attempt to use ∃E 2, 3–4

4And again, our formulation of the flagging constraint is more restrictive than necessary. It would be alright
if the flag-ed name c occurred outside the subproof, as long as it doesn’t occur in any earlier premise or
undischarged assumption (or in the original existential sentence, or in the goal formula to be proven).
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It would a bad thing if we could prove the conclusion like this, since it doesn’t follow from
the premises! And the Flag-ing constraint is what prevents us from doing so: the use of ∃E
on the last line is not legitimate, because the Flag-ed name on line 3, namely ‘b’, appears
outside the subproof, on lines 1 and 5.

We could avoid part of the problem by existentially generalizing line 4 in the subproof to
obtain ∃x(Lx∧¬Lx), before discharging our assumption:

1 Lb Premise

2 ∃x¬Lx Premise

3 ¬Lb Flag b

4 Lb∧¬Lb ∧E 1, 3

5 ∃x(Lx∧¬Lx) ∃I 4

6 ∃x(Lx∧¬Lx) No! Illegitimate attempt to use ∃E 2, 3–5

Now, the name ‘b’ no longer occurs below the subproof. But this is no better. If it were
legitimate, this proof would vindicate an argument of the following sort:

Borges is a librarian. Someone is not a librarian. Therefore someone both is
and is not a librarian.

This is clearly a bad argument: we can’t assume that the “someone” who is not a librarian
according to the second premise is, specifically, the individual Borges mentioned in the first
premise. And again, the Flag-ing constraint rules out our supposed “proof”: the use of ∃E
on the the last line is not legitimate because although the Flag-ed name ‘b’ doesn’t occur on
line 6 any longer, it does still occurs outside the subproof, namely in the premise on line 1.

The overarching problem with both proofs is that because the name ‘b’ already occurs
in one of our premises, it does not have the status of an arbitrary name in our proof, and
therefore can’t be used as an arbitrary name for whatever object premise 2 tell us is not a
librarian. The moral is: if you want to squeeze information out of an existential quantifier,
choose a new name for your substitution instance. That way, you will meet the constraints
on the rule for ∃E.

Let’s work through a more complicated proof that requires both ∃E and ∀I at the same
time. We’ll show that the following is valid:

∀x∃yLxy,∀x∀y(Lxy→ Lyx) ∴ ∀x∃yLyx

If we read ‘L’ as ‘loves’, this argument says that if everyone loves someone, and loves is
always reciprocated — in the sense that if x loves y, then y loves x back — it follows that
everyone is loved by someone. We can show that this is valid with the following proof:



6. NATURAL DEDUCTION FOR FOL 130

1 ∀x∃yLxy Premise

2 ∀x∀y(Lxy→ Lyx) Premise

3 a Flag

4 ∃yLay ∀E 1

5 Lab Assumption (flag b)

6 ∀y(Lay→ Lya) ∀E 2

7 Lab→ Lba ∀E 6

8 Lba →E 7, 5

9 ∃yLya ∃I 8

10 ∃yLya ∃E 4, 5–9

11 ∀x∃yLyx ∀I 3–10

This is a relatively complex proof, so let’s think through it systematically. As usual, we
work backward from the conclusion we’re aiming for: we are trying to prove ‘∀x∃yLyx’,
i.e. that everyone is loved by someone. Since this is a universal sentence, we use ∀I as our
overall strategy: we pick an arbitrary name, say ‘a’, and open up a subproof where we Flag
‘a’, and make it our goal to prove the ‘a’-instance of our conclusion, ∃yLya, which says that
someone loves a . If we are able to complete the subproof, we’re allowed to infer since a is
loved by someone, and a was arbitrary, everyone is loved by someone.

So what do our premises imply about our object a? Well, premise 1 says that everyone
loves someone, so we can infer by ∀E that a in particular loves someone, as we did on line 4.
Since a loves someone, we can give that someone a name, say ‘b’, in order to reason about
them. So we can say a loves b. The way this works in our proof is that given the existential
sentence ‘∃yLay’ on line 4, we assume Lab as an arbitrary instance of it on line 5.

Next, premise 2 tells us that love is reciprocal. So given that a loves b, we can conclude
that b loves a. In our proof, we did this by obtaining line 7 via two steps of ∀E on premise 2,
and then doing→E on that. Alright: so given that b loves a, we an conclude that a is loved
by someone, as on line 9. And at this point, having gotten rid of the name ‘b’, we can pop
out of our subproof by ∃E. And finally, since a was arbitrary, we can pop out of our Flag-ed
subproof and conclude by ∀I that everyone is loved by someone, as on line 11.

■ Exercises 6.4
A. Explain why these two ‘proofs’ are incorrect.

1 ∀xRxx Premise

2 a Flag

3 Raa ∀E 1

4 ∀yRay ∀I 2-3



6. NATURAL DEDUCTION FOR FOL 131

1 ∀x∃yRxy Premise

2 ∃yRay ∀E 1

3 Raa Assumption

4 ∃xRxx ∃I 3

5 ∃xRxx ∃E 2, 3–4

B. The following three proofs are missing their citations (rule and line numbers). Add them,
to turn them into full proofs.

1 ∀x∃y(Rxy∨Ryx)

2 ∀x¬Rmx

3 ∃y(Rmy∨Rym)

4 Rma∨Ram

5 ¬Rma

6 Ram

7 ∃xRxm

8 ∃xRxm

1 ∀x(Jx→ Kx)

2 ∃x∀yLxy

3 ∀xJx

4 ∀yLay

5 Laa

6 Ja

7 Ja→ Ka

8 Ka

9 Ka∧Laa

10 ∃x(Kx∧Lxx)

11 ∃x(Kx∧Lxx)

C. Provide a proof of each claim.

1. ∀x(Ax→ Bx),∃xAx ⊢ ∃xBx
2. ∃x(Fx∧∃y¬Gy) ⊢ ∃x(¬Gx∧∃yFy)
3. ∃x(Fx→ Ga) ⊢ ∀xFx→ Ga
4. ∃x¬Fx ⊢ ¬∀xFx
5. ∀x∀y(Rxy→ Fx) ⊢ ∀x(∃yRxy→ Fx)
6. ∃x(Fx→∀yRxy) ⊢ ∃x∀y(Fx→ Rxy)
7. ∀x(Fx→∀y¬Fy) ⊢ ¬∃xFx
8. ∃x∃yRxy ⊢ ∃y∃xRxy
9. ∃y(∀x(Gx→ Gy)∧∀z(Gy→ Gz)),∃xGx ⊢ ∀xGx

10. ∀x∀yLxy ⊢ ∀x(∃yLxy∧∃yLyx)
11. ∀x∃yLxy,∀x∀y(Lxy→ Lyx) ⊢ ∀x∃yLyx
12. ∃x∀y(Fx↔ Fy) ⊢ ¬∀xFx→∀x¬Fx
13. ∀x∃y(Fx→ Gy),∀x∃y(¬Fx→ Gy) ⊢ ∃zGz
14. ∃y∀x(Fx∧Gy) ⊢ ∀x∃y(Fx∧Gy)
15. ∀x∃y(Fx∧Gy) ⊢ ∃y∀x(Fx∧Gy)
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16. ∀y∃x(Fx→ Gy) ⊢ ∃x(Fx→∀yGy)
17. ∀x(Mx↔ Nx),∃y(My∧∃xRxy) ⊢ ∃xNx
18. ⊢ ∀z(Pz∨¬Pz)
19. ⊢ ∀x∀yRxy→∀xRxx
20. ⊢ ∀y∃x(Qy→ Qx)
21. ∀x∀y(Gxy→ Gyx) ⊢ ∀x∀y(Gxy↔ Gyx)
22. ∀x(¬Mx∨L jx),∀x(Bx→ L jx),∀x(Mx∨Bx) ⊢ ∀xL jx

D. In §B problem part A, we considered fifteen syllogistic figures of Aristotelian logic.
Provide proofs for each of the argument forms. Note: you will find it much easier if you
symbolize (for example) ‘No F is G’ as ‘∀x(Fx→¬Gx)’ rather than ‘¬∃x(Fx∧Gx)’.

E. Aristotle and his successors identified other syllogistic forms which depended upon ‘ex-
istential import’. Symbolize each of these argument forms in FOL and offer proofs.

• Barbari. Something is H. All G are F. All H are G. So: Some H is F
• Celaront. Something is H. No G are F. All H are G. So: Some H is not F
• Cesaro. Something is H. No F are G. All H are G. So: Some H is not F.
• Camestros. Something is H. All F are G. No H are G. So: Some H is not F.
• Felapton. Something is G. No G are F. All G are H. So: Some H is not F.
• Darapti. Something is G. All G are F. All G are H. So: Some H is F.
• Calemos. Something is H. All F are G. No G are H. So: Some H is not F.
• Fesapo. Something is G. No F is G. All G are H. So: Some H is not F.
• Bamalip. Something is F. All F are G. All G are H. So: Some H are F.

F. The following pairs of sentences are all equivalent, showing that we can move quanti-
fiers “across” logical operators under certain circumstances. Give proofs to that they are
equivalent (in these Ga is really just a placeholder, it could be any sentence ϕ):

1. ∀x(Fx∧Ga) ⊢⊢ ∀xFx∧Ga
2. ∃x(Fx∨Ga) ⊢⊢ ∃xFx∨Ga
3. ∀x(Ga→ Fx) ⊢⊢ Ga→∀xFx
4. ∀x(Fx→ Ga) ⊢⊢ ∃xFx→ Ga
5. ∃x(Ga→ Fx) ⊢⊢ Ga→∃xFx
6. ∃x(Fx→ Ga) ⊢⊢ ∀xFx→ Ga

When all the quantifiers occur at the beginning of a sentence, that sentence is said to be in
prenex normal form. These equivalences are sometimes called prenexing rules, since they
give us a means for putting any sentence into prenex normal form. For example, ‘∃xFx∧
∀yGy’ can be put into prenex normal form as ‘∃x∀y(Fx∧Gy), or also as ‘∀y∃x(Fx∧Gy)’.

G. Give proofs for the following quantifier equivalence laws involving negation:

1. ∀x¬Fx ⊢⊢ ¬∃xFx
2. ∃x¬Fx ⊢⊢ ¬∀xFx
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6.5 Rules for identity

In §5.9, we noted that if we say objects a and b are identical, we don’t merely mean that
they are very similar to each other, or indistinguishable in the way that e.g. two cans of soda
or two pennies might be. Rather, they have to be one and the same object. It follows that no
matter how much you tell me about what a and b are like, qualitatively, this won’t suffice
to conclude that a = b. Indeed, no sentences which do not already involve an identity claim
could justify an inference to ‘a = b’

However, we can be sure that every object is identical to itself. No premises are required
to conclude that much. This forms the basis of our identity introduction rule:

c= c =I

Notice that this rule does not require you to cite any earlier lines of the proof. For any name
c, you can just write c= c at any point, with only the =I rule as justification. Using this
rule we can prove the LAW OF IDENTITY, discussed in §5.9, which says that everything is
identical to itself, i.e. that ∀x x = x, as follows:

1 a Flag

2 a = a =I

3 ∀x x = x ∀I 1–2

This shows that identity is reflexive, i.e. it is a relation that everything bears to itself. The
relation of being at-least-as-tall-as would be another example of a reflexive relation, since
everyone is at least as tall as themselves.

Our elimination rule is more fun. If you have established ‘a = b’, then anything that is
true of the object named by ‘a’ must also be true of the object named by ‘b’, since they are
one and the same object. This means that given any sentence with ‘a’ in it, you can replace
some or all of the occurrences of ‘a’ with ‘b’. For example, from ‘Raa’ and ‘a = b’, you are
justified in inferring ‘Rab’, or ‘Rba’, or ‘Rbb’. More generally:

m a= b

n ϕ(. . .a. . .)

ϕ(. . .b. . .) =E m, n

This says that if ϕ(. . .a. . .) is a sentence containing the name ayou may infer any sentence
ϕ(. . .b. . .) obtained by replacing one or more occurrences of the name a with the name b.
Lines m and n can occur in either order, but you should cite the identity statement first.

Notice that technically this says that given an identity α = β , you can replace occurrences
of the name α , appearing to the left of =, with the name β , occurring on the right. So given
a = b, you can go from Rab to Rbb (replacing a with b), but you technically can’t go from
Rab to Raa (replacing b with a). However, using our rule of = E together with = I, we
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can show that a = b implies b = a, and from b = a together with Rab we now can infer
Raa. Here is a proof showing that in general, whenever x = y then y = x, i.e. that identity is
symmetric:

1 a Flag

2 b Flag

3 a = b Assumption (for→I)

4 a = a =I

5 b = a =E 3, 4

6 a = b→ b = a →I 3–5

7 ∀y(a = y→ y = a) ∀I 2–6

8 ∀x∀y(x = y→ y = x) ∀I 1–7

Here we obtain line 5 by replacing one instance of ‘a’ in line 4 with an instance of ‘b’, which
is justified given ‘a = b’. Although = E technically only allows replacing the occurrences
of the name to the left of = with the one to the right, in practice we’ll allow ourselves to be
sloppy an also use = E in the other direction.

The rule of = E is closely related to LEIBNIZ’S LAW, which we briefly discussed in §5.9.
Leibniz’s Law says that if x and y are identical, then x has any given property iff y does
too. For example, if ‘D’ represents the property of being a dog, Leibniz’s Law tell us that if
x = y, then x is a dog iff y is also a dog:

∀x∀y(x = y→ (Dx↔ Dy))

We can prove this using =E (in its “sloppy,” i.e. derived, form) as follows:

1 a Flag

2 b Flag

3 a = b Assumption (for→I)

4 Da Assumption (for↔I)

5 Db =E 3, 4

6 Db Assumption (for↔I)

7 Da =E 3, 6

8 Da↔ Db ↔I 4–5, 6–7

9 a = b→ (Da↔ Db) →I 3–8

10 ∀y(a = y→ (Da↔ Dy)) ∀I 2–9

11 ∀x∀y(x = y→ (Dx↔ Dy)) ∀I 1–10



6. NATURAL DEDUCTION FOR FOL 135

The move from 4 to 5 is fine given the strict version of = E, since it involves replacing a,
which occurs on the left in the identity on 3, with b, which occurs to the right; but the step
from 6 to 7 technically isn’t kosher, since it involves replacing b with a. However, we know
that from a = b on line 3 we can prove b = a, and the move from 6 to 7 is kosher given
b = a, so we can be sloppy and just use = E in that direction too, as we did here.

■ Exercises 6.5
A. Here are some important logical properties that a two-place relation R could have:

R is reflexive iff ∀xRxx

R is serial iff ∀x∃yRxy

R is symmetric iff ∀x∀y(Rxy→ Ryx)

R is transitive iff ∀x∀y∀z((Rxy∧Ryz)→ Rxz)

R is euclidean iff ∀x∀y∀z((Rxy∧Rxz)→ Ryz)

Above we showed that identity is both reflexive and symmetric. Show that identity also has
the other three properties: it is euclidean, tansitive, and serial. That is, prove each of the
following theorems:

1. ⊢ ∀x∀y∀z((x = y∧ x = z)→ y = z)
2. ⊢ ∀x∀y∀z((x = y∧ y = z)→ x = z)
3. ⊢ ∀x∃y x = y

B. Provide a proof of each claim. (Remember that t1 ̸= t2 is shorthand for the negated
identity sentence ¬t1 = t2).

1. Pa∨Qb,Qb→ b = c,¬Pa ⊢ Qc
2. m = n∨n = o,An ⊢ Am∨Ao
3. ∀x x = m,Rma ⊢ ∃xRxx
4. ∀x∀y(Rxy→ x = y) ⊢ Rab→ Rba
5. ¬∃x x ̸= m ⊢ ∀x∀y(Px→ Py)
6. ∃xJx,∃x¬Jx ⊢ ∃x∃y x ̸= y
7. ∀x(x = n↔Mx),∀x(Ox∨¬Mx) ⊢ On
8. ∃xDx,∀x(x = p↔ Dx) ⊢ Dp
9. ∃x

[
(Kx∧∀y(Ky→ x = y))∧Bx

]
,Kd ⊢ Bd

10. ⊢ Pa→∀x(Px∨ x ̸= a)

C. Show that the following are provably equivalent:

• Fa
• ∃x(x = a∧Fx)

D. The following are all acceptable ways to symbolize the English sentence ‘there is exactly
one F’:
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• ∃xFx∧∀x∀y
[
(Fx∧Fy)→ x = y

]
• ∃x

[
Fx∧∀y(Fy→ x = y)

]
• ∃x∀y(Fy↔ x = y)

Show that they are all provably equivalent. (Hint: to show that three claims are provably
equivalent, it suffices to show that the first proves the second, the second proves the third
and the third proves the first; think about why.)

E. Symbolize the following argument, and then give a proof of it:

There is exactly one F. There is exactly one G. Nothing is both F and G. So:
there are exactly two things.
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Recall that in TFL, we had the notion of a valuation: an assignment of truth values to
atomic sentences. We then gave a semantics that allowed us to compute the truth value of
an arbitrarily complex TFL sentence on any given valuation. Finally, we used this notion of
truth-on-a-valuation to define various logical concepts, like equivalence and entailment.

In this chapter we will do something very similar for FOL, except that the notion of a
valuation now gets replaced by the more complex notion of an interpretation. We’ll first
have to see what an FOL interpretation is, and then learn how to compute the truth values
of arbitrarily complex FOL sentences in a given interpretation. With that in hand, we can
then again define logical concepts — like logical entailment, or validity — for FOL.

Ultimately, we’ll be able to use this machinery to show that a given FOL argument is not
valid, by giving an interpretation that makes its premises true and its conclusion false. For
reasons that will emerge in this chapter, we won’t use interpretations to show that arguments
are valid. We will use the natural deduction proofs we learned in chapter 6 to do this.

7.1 Predicates and their Extensions

The connectives of TFL are all truth-functional, and consequently, TFL only cares about
what truth-values sentences have. We can assign a truth value to a sentence directly, via a
valuation that just stipulates that the sentence ‘P’, for example, is to have the value true.
Alternatively, we can do it indirectly, by offering a symbolization key, e.g.:

P: Big Ben is in London

This stipulates that the TFL sentence ‘P’ is to have the same truth value as the English
sentence ‘Big Ben is in London’ (which, as it happens, is true). But no further aspect of the
meaning of the English sentence carries over to TFL.

FOL is similarly impoverished as regards meaning. It goes beyond mere truth values,
because it allows us to split atomic sentences into their parts, consisting of terms and predi-
cates. A term is a word that refers to a particular object, and a predicate is a word that is true
of objects. But FOL doesn’t care about any other aspect of a predicate’s meaning besides
what objects it’s true of, or any other aspect of a term’s meaning besides what it refers to.
For example, when we provide a symbolization key for some FOL predicate, such as:

S: is a US state.

137
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this isn’t intended to suggest that our FOL predicate ‘S’ carries the same meaning as the
English predicate. It simply tells us that the FOL predicate is to be true of exactly those
things that the English predicate ‘ is a US state’ is true of.

Alternatively, we can stipulate what objects a predicate is true of directly, by just listing
those objects. So we might stipulate that ‘S’ is to be true of: Alabama, Alaska, Arizona,
. . . and so on, listing all 50 states. This is a perfectly legitimate interpretation of an FOL
predicate, because, again, all we care about is what objects it’s true of, and our stipulation
settles this. The things a predicate is true of comprise the EXTENSION of the predicate. FOL
is said to be an EXTENSIONAL LANGUAGE because it doesn’t care about any aspect of a
predicate’s meaning besides its extension.

Our stipulations about predicate extensions can be as arbitrary as we like. For example,
we could stipulate that ‘H’ should have an extension consisting of the following objects:

H: Barack Obama, the number π , the play Hamlet

It doesn’t matter that these objects have nothing in common, they still form a perfectly good
predicate extension. Suppose we add the following names to our symbolization key:

b: Usain Bolt
o: Barack Obama
p: the number π

Together, these stipulations then settle the truth value of any atomic FOL sentence formed
from the predicate ‘H’ and the names ‘d’, ‘o’, and ‘p’: the sentences ‘Ho’ and ‘H p’ will
both be true on this interpretation, because Obama and π are in the predicate’s extension,
but ‘Hb’ will be false, because Usain Bolt is not one of the objects ‘H’ is true of.

Many-Place Predicates Things get slightly more complicated when we move from one-
place predicates to two-place predicates. Consider a symbolization key like:

L: loves

This key should be read as saying something like:

‘L’ is true of x and y (in that order) iff x loves y.

The qualifier “in that order” is very important here. Since x might love y without y also
loving x, a two-place predicate like this can apply to a pair of objects in one order but not
another.

How should a direct stipulation of the extension of a two-place predicate like this look?
This is a bit tricky. If we just list objects that ‘L’ applies to, we won’t know which of the
objects are the lovers and which are the objects they love. A simple list would in other words
give us no way to indicate the order in which the predicate holds of objects.

To deal wit this, we instead let two-place predicates be true of pairs of objects. We could
for example stipulate that ‘R’ is to be true of, and only of, the following pairs of objects,
indicated with angle brackets:
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R : ⟨Lenin, Marx⟩
⟨Heidegger, Sartre⟩
⟨Sartre, Heidegger⟩
⟨Marx, Marx⟩

The angle-brackets tell us in what order the predicate R applies to the objects: the first object
between the brackets always corresponds to the first argument slot in the predicate, and the
second object corresponds to the second argument slot. Suppose, for example, that we add
the following stipulations for names:

l: Lenin
m: Marx
h: Heidegger
s: Sartre

Then ‘Rlm’ will be true, since the pair ⟨Lenin, Marx⟩ is the extension of ‘R’. But ‘Rml’ will
be false, since ⟨Marx, Lenin⟩ is not in the extension of ‘R’. However, both ‘Rhs’ and ‘Rsh’
will be true, since both ⟨Heidegger, Sartre⟩ and ⟨Sartre, Heidegger⟩ are on our list of pairs,
and Rmm will also be true, since the pair ⟨Marx, Marx⟩ is in R’s extension.

If we were dealing with a three-place predicate, its extension would consist not of pairs of
objects, but of ordered triples of objects, like ⟨Heiddegger, Marx, Sartre⟩. And a four-place
predicate would have ordered quadruples of objects in its extension, a five-place predicate
would have ordered quintuples, and so on. In general, we call ordered things like these
TUPLES. So the extension of a many-place predicate can be specified by giving a list of
tuples: either of pairs, or of triples, or of quadruples etc. depending on whether we’re dealing
with a two-, three-, or four-place predicate.

7.2 FOL Interpretations

We defined a valuation of a sentence ϕ (or collection of sentences) of TFL to be an assign-
ment of truth values to all the atomic sentences contained in ϕ (or the collection). In FOL,
the role of a valuation will be played by an INTERPRETATION. FOL interpretations are more
complex than TFL valuations, because they have three components:

An FOL INTERPRETATION of a sentence ϕ (or of a collection of sentences
C, e.g. an argument) consist of:

1. A specification of a DOMAIN containing at least one object

2. For each name in ϕ (or in C), an assignment of exactly one object in
the domain. This object is the name’s REFERENT.

3. For each predicate in ϕ (or in C), a specification of what objects in
the domain (if any), and in what order, that predicate is true of. This
constitutes the predicate’s EXTENSION.a

aSo notice that a predicate can have an empty extension, in which case it it isn’t true of
any objects in the domain. By contrast, we don’t allow “empty names” that lack a referent.
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Symbolization keys like those we used in chapter 5 consequently give us one convenient
way to present an interpretation. For example, the following counts as one possible FOL
interpretation of ‘(Lw∧Tw)’:

Domain: people
w: Wittgenstein
L: is a logician
T : is a school teacher

This has all three components: (i) a specification of a domain, (ii) a specification of a referent
for every name in ‘(Lw∧Tw)’, and (iii) a specification of an extension for every predicate
in ‘(Lw∧ Tw)’. The interpretation then determines a truth value for the sentence. In this
case, since Wittgenstein was both a logician and a school teacher, both ‘L’ and ‘T ’ are true
of the referent of the name ‘w’ on this interpretation, and so ‘(Lw∧Tw)’ as a whole is true.

Alternatively, we can specify interpretations by just directly listing the objects that predi-
cates are true of, as discussed in the previous section. In fact, as we move on, it will often be
convenient to consider fairly abstract interpretations where the domain consists of natural
numbers, i.e. positive integers, rather than people, or plants, or other objects. One possible
interpretation of ‘∃x(Fx∧Gx)’, for example, would be the following:1

Domain: 1, 2, 3
F :
G: 1, 3

Here the domain contains the numbers 1, 2, and 3, the predicate ‘F’ is true of none of those
objects, and ‘G’ is true of 1 and 3. As you can probably guess, ‘∃x(Fx∧Gx)’ comes out
false on this interpretation, since there’s no object in the domain of which both ‘F’ and ‘G’
are true. We’ll look at how to determine truth values more closely in the next two sections.

It will often be useful to represent directly-specified interpretations diagramatically. In-
terpretations like the one above that involve only one-place predicates can be represented
using a MATRIX DIAGRAM:

F G
1 − +

2 − −
3 − +

Here we list the objects in the domain on the left, and then put +’s and −’s under each
predicate to indicate which objects that predicate is true of. If we were also considering
some FOL names, we could include those in our matrix diagram by listing each name to the
left of whichever object it refers to.

As we discussed in the last section, to directly specify the extension of a many-place
predicate, we have to give a list of tuples of objects, rather than of individual objects, to
indicate in what order the predicate holds of the objects. So for example, if we take the
sentence ‘∀xRxx’ which contains the two-place predicate ‘R’, one possible interpretation
would be the following:

1Although this kind of domain officially consists of just numbers, we could in principle regard it as consist-
ing of any objects we like — we’re just calling these objects ‘object 1’, ‘object 2’, ‘object 3’ etc. for simplicity.
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Domain: 1, 2, 3, 4
R: ⟨1, 4⟩, ⟨4,4⟩, ⟨1, 2⟩, ⟨2, 1⟩ ⟨1, 3⟩,

To represent interpretations with two-place predicates diagramatically, we can use ARROW

DIAGRAMS like this:

1 2

34

The arrows represent the order in which ‘R’ holds of the objects. To indicate that 1 bears the
relation represented by ‘R’ to 4, we draw an arrow from 1 to 4, and to indicate that 4 bears
the relation to itself, we draw an arrow that loops from 4 back to 4, and to indicate that 1
bears the relation to 2, and 2 also bears it to 1, we draw two arrows between them, and so
on. So there is one arrow for each pair in the extension of the predicate.

If we wanted, we could make such arrow diagrams more complex. For example, we could
label objects in our diagram with FOL names to indicate which object each name refers to.
To represent the extension of a one-place predicate in an arrow diagram, we could draw
a circle around some objects and label the circle with the predicate. And to represent the
extensions of multiple two-place predicates in a single arrow diagram, we might use arrows
with dashed as opposed to solid lines, or arrows of different colors.

7.3 Truth in FOL

We have introduced interpretations. Our next task is to give a precise account of what it is for
an arbitrarily complex FOL sentence to be true or false in a given interpretation. There are
three kinds of sentence in FOL: atomic sentences, sentences whose main logical operator
is a sentential connective, and lastly, sentences whose main logical operator is a quantifier.
We’ll go through each kind in turn.

Our explanation will be completely general, but to make things comprehensible, it will
be useful to have a particular interpretation to hand in order to give examples. Let’s use the
following as our go-to interpretation:

Domain: all positive integers
a: 2
b: 3
E: is even
R: is less than

I’ve here specified the extensions of ‘E’ and ‘R’ indirectly, using English predicates, because
I can’t list all the numbers, or pairs of numbers, these are true of. But the extension of ‘E’
contains even numbers 2,4,6,8 . . ., and the extension of ‘R’ contains the pair ⟨2, 3⟩, as well
as ⟨2, 4⟩ and ⟨2,5⟩ and ⟨3, 5⟩, and indeed every pair ⟨x,y⟩ where x is less than y.



7. THE SEMANTICS OF FOL 142

Truth-Rule for Atomic Sentences Determining the truth value of an atomic sentence on
a given interpretation is fairly straightforward. The atomic sentence ‘Ea’, for example, is
true just in case ‘E’ is true of the referent of ‘a’. Given our go-to interpretation, this sentence
is true since ‘a’ refers to 2, and 2 is indeed an even number. By contrast, ‘Eb’ would be false
on our interpretation, because 3, which is the referent of ‘b’, is not in the extension of ‘E’,
since it is not an even number.

Similarly, ‘Rab’ is true on our interpretation just in case the referent of ‘a’ is less than
the referent of ‘b’. Since 2 is indeed less than 3, ‘Rab’ is true. By contrast, ‘Rba’ is not
true, because 3 is not less than 2, or to put it another way, the pair ⟨3,2⟩ is not in the
extension of ‘R’ on our interpretation. Similarly, neither ‘Raa’ nor ‘Rbb’ are true on our
go-to interpretation, since neither 2 nor 3 is less than itself (i.e. the pairs ⟨2,2⟩ and ⟨3,3⟩ are
not in the extension of ‘R’). In general, the truth-rule for atomic sentences is:

When R is an n-place predicate and c1,c2, . . . ,cn are names, the sentence
Rc1c2 . . .cn is true in a given interpretation iff R is true of the objects
referred to by c1,c2, . . . ,cn (in that order) in that interpretation

Truth-Rules for TFL Connectives The truth rules governing our truth-functional opera-
tors are exactly the same as they were in TFL:

¬ϕ is true in a given interpretation iff ϕ false in that interpretation

(ϕ ∧ψ) is true in a given interpretation iff both ϕ and ψ are true in that
interpretation

(ϕ ∨ψ) is true in a given interpretation iff either ϕ or ψ is true in that
interpretation

(ϕ → ψ) is true in a given interpretation iff either ϕ is false or ψ is true
in that interpretation.a

(ϕ ↔ ψ) is true in a given interpretation iff ϕ has the same truth value as
ψ in that interpretation

aThis means that (ϕ → ψ) is false if ϕ is true and ψ is false, and true otherwise.

This is equivalent to the information conveyed by the characteristic truth tables for the
connectives; it’s just presented in words here rather than truth tables. Some examples will
help to illustrate the idea (make sure you understand them!). On our go-to interpretation:

• ‘¬Raa’ is true because 2 is not less than itself
• ‘Rab∧Ea’ is true because both conjuncts are true
• ‘Rab∧Eb’ is false because, although ‘Rab’ is true, ‘Eb’ is false
• ‘Eb→¬Rba’ is true because ‘Eb’ is false.
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7.4 Truth-Rules for Quantified Sentences

The big innovation in FOL is the use of quantifiers. And specifying the truth conditions for
quantified sentences turns out to be a little tricky. If we only look at simple cases things are
pretty straightforward. We can say that ‘∃xEx’ is true iff ‘E’ is true of at least one object in
the domain, and ‘∀xEx’ is true iff ‘E’ is true of every object in the domain. So on our go-to
interpretation, ‘∃xEx’ comes out true, and ‘∀xEx’ comes out false.

But what about a more complex sentence like ‘∀x(Ex→ Rxb)’? This has a universal
quantifier as its main operator, so we might again try to say that it is true on an interpreta-
tion iff ‘(Ex→ Rxb)’ is true of every object in the domain. The trouble is that ‘(Ex→ Rxb)’
is not a predicate, and our interpretation therefore does not directly specify what objects
this complex formula is true of. So while our simple-minded approach worked for ‘∀xEx’,
it breaks down when we consider more complex sentences. What we need is some uni-
form and general way of specifying the truth conditions of any universally (or existentially)
quantified sentence, irrespective of how complex it is.

The way we will do this is by temporarily treating variables like ‘x’ as if they referred to
objects in the domain. For example, we will say that the universal sentence ‘∀x(Ex→ Rxb)’
is true iff the formula ‘(Ex→ Rxb)’ that the quantifier operates on is true no matter what
object in the domain the variable ‘x’ is treated as referring to. Of course, a variable like
‘x’ doesn’t actually refer to any particular thing, since it’s not a name, and ‘(Ex→ Rxb)’
doesn’t actually have a truth value. But if we temporarily treated ‘x’ as if it referred to 1, for
example, then the conditional ‘(Ex→ Rxb)’ would be true, since its antecedent ‘Ex’ would
be false (given that 1 is not even).

We will use the notion of a VARIABLE ASSIGNMENT to implement this idea of temporar-
ily treating variables as if they refer to objects. We can, for example, write [x : 1] for an
assignment that treats ‘x’ as referring to 1, and [x : 3] for an assignment that treats ‘x’ as
referring to 3. So although the variable in ‘Ex’ is not a name for any object in the domain,
if we consider it relative to an assignment like [x : 3], the variable works just like a name
that refers to the number 3. Such assignments can also cover multiple variables at once. For
example, [x : 1,y : 5,z : 2] would be an assignment relative to which ‘x’ refers 1, ‘y’ refers to
5, and ‘z’ refers to 2. On our go-to interpretation, (Ez∧Rxy) would then be true relative to
this assignment (since 2 is even, and 1 is less than 5), but not relative to e.g. [x : 5,y : 2,z : 1].

Returning to ‘∀x(Ex→ Rxb)’, our idea is that to determine whether this is true, we go
through each object in the domain, and ask whether ‘(Ex→ Rxb)’ would come out true if
‘x’ were treated as referring to that object.2 So we have to ask ourselves:

is ‘(Ex→ Rxb)’ true on [x : 1]?

is ‘(Ex→ Rxb)’ true on [x : 2]?

is ‘(Ex→ Rxb)’ true on [x : 3]?

2Having brought assignments onto the scene, we should now technically go back and re-do our explanation
of the truth conditions for atomic sentences too. That’s because we now need to determine the truth values of
formulas like ‘(Ex → Rxb)’ relative to an assignment of an object to the free variable ‘x’, but our earlier
explanation only covered sentences (closed formulas), and said nothing about variable assignments. See the
Appendix for the technical details.
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is ‘(Ex→ Rxb)’ true on [x : 4]?
...

and so on for every positive integer we could assign to ‘x’. Now ‘(Ex→ Rxb)’ is true on
[x : 1] as well as [x : 3], since in both cases the antecedent ‘Ex’ comes out false (because
neither 1 nor 3 are even). And ‘(Ex→ Rxb)’ is also true on [x : 2], since both ‘Ex’ and ‘Rxb’
are true on [x : 2] (because 2 is even, and also less than 3, which is what ‘b’ refers to on
our go-to interpretation). An object that makes a formula like ‘(Ex→ Rxb)’ true is said to
SATISFY that formula. So the numbers 1, 2, and 3 all satisfy ‘(Ex→ Rxb)’.

But the number 4 does not satisfy it: ‘(Ex→ Rxb)’ is false on the assignment [x : 4].
That’s because although ‘Ex’ is true on [x : 4] (since 4 is even), ‘Rxb’ is not true on [x : 4]
(since 4 is not less than 3). So since we found a number that makes‘(Ex→ Rxb)’ false,
we can conclude that the universal sentence ‘∀x(Ex→ Rxb)’ we started with is itself false
— it isn’t true of every number. And that’s of course the result we want: relative to our
go-to interpretation, ‘∀x(Ex→ Rxb)’ says that every even number is less than three, which
is clearly false, since there are lots of even numbers, including 4, that are not less than 3.

In practice, keeping track of variable assignments while calculating the truth value of a
formula can get messy, especially when we’re dealing with more than one variable. We’ll
therefore make use a notational shorthand that will make things a little easier. Instead of
explicitly mentioning the variable assignment, we will use superscripts on the variables
themselves to indicate what objects we are temporarily treating them as referring to. So
instead of saying:

‘(Ex→ Rxb)’ is true on [x : 2]

as we did above, we will just add a superscript of 2 to the variable ‘x’ itself and write:

(Ex2→ Rx2b) is true

to indicate that we’re treating x as referring to 2. Similarly, instead of saying that ‘(Ez∧
Rxy)’ is true on [x : 1,y : 5,z : 2], we can just say that (Ez2∧Rx1y5) is true.

You can think of (Ex2→ Rx2b) as a SEMANTIC INSTANCE of ∀x(Ex→ Rxb), much like
(Ea→ Rab) is a syntactic instance of ∀x(Ex→ Rxb), something we could infer by ∀E. In
both cases, we delete the quantifier, and then do something with the variable the quantifier
bound: in the case of syntactic instances, we replace the variable with a name, and in the
case of semantic instances, we assign an object from the domain to the variable.

Given a quantified FOL sentence ∀vϕ(. . .v . . .) or ∃vϕ(. . .v . . .), its SE-
MANTIC INSTANCES ϕ(. . .vo . . .) in an interpretation I are obtained by
deleting the quantifier and assigning some object o from I’s domain to
every free occurrence of the variable v in ϕ(. . .v . . .).

It’s important to remember, though, that this really is just a notational shorthand. Whereas
the syntactic instance (Ea→ Rab) is a genuine sentence of FOL, the semantic instance
(Ex2 → Rx2b) is not a sentence of FOL (nor even a formula), since the language of FOL
doesn’t include superscripts on variables. Talk of (Ex2→ Rx2b) is, again, just shorthand for
talking about the FOL formula ‘(Ex→ Rxb)’ relative to an assignment of 2 to ‘x’.

With this background in place, we can now state the truth-rules for quantified sentencess:
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∀vϕ(. . .v . . .) is true in an interpretation I iff ϕ(. . .vo . . .) is true in I for
every object o in I’s domain (i.e. if all of its semantic instances in I are
true).

∃vϕ(. . .v . . .) is true in an interpretation I iff ϕ(. . .vo . . .) is true in I for at
least one object o in I’s domain (i.e. if at least one of its semantic instances
in I is true).

The idea, again, is that we go through each object o in the domain, and check whether
ϕ(. . .v . . .) is true if v is treated as referring to o; if so, the universal sentence ∀vϕ(. . .v . . .)
is true, if not, it’s false. Notice that it’s much easier for an existential sentence to be true: for
∃vϕ(. . .v . . .) to be true, it suffices if one object in the domain satisfies ϕ(. . .v . . .).

This in turn means that that it’s very easy for a universal sentence ∀vϕ(. . .v . . .) to be
false: we just have to find a single object that makes ϕ(. . .v . . .) false. For an existential
sentence ∃vϕ(. . .v . . .) to be false, on the other hand, we have to make sure that ϕ(. . .v . . .)
is false for every object in the domain. Let’s state these “falsity conditions” too:

∀vϕ(. . .v . . .) is false in an interpretation I iff ϕ(. . .vo . . .) is false in I

for at least one object o in I’s domain.

∃vϕ(. . .v . . .) is false in an interpretation I iff ϕ(. . .vo . . .) is false in I for
every object o in I’s domain.

Again, we’re here suppressing explicit mention of variable assignments via our notational
shorthand, but you can look at the Appendix for the official version of the semantics, with
variable assignments made explicit. Let’s now go through a few examples to get a better
feel for how to determine the truth values of quantified sentences.

7.5 Truth in an Interpretation: Examples

Since the number of objects we have to consider increases the larger the domain is, we’ll
here use interpretations with relatively small domains. Let’s start with the following inter-
pretation with just three objects in its domain:

Interpretation A

Domain: 1, 2, 3
F : 1
G: 2, 3
H:

F G H
1 + − −
2 − + −
3 − + −

Example 1 ∃x(Fx∧Gx)
For this to be true, it suffices if a single object in the domain satisfies ‘(Fx∧Gx)’. Unfortu-
nately, no matter which object we treat ‘x’ as referring to, it comes out false. So our original
existential sentence is false. Our explanation in other words goes like this:
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▷ ∃x(Fx∧Gx) is false because ‘(Fx∧Gx)’ is false for every object in the domain:

▷ (Fx1∧Gx1) is false (since Gx1 is false), and

▷ (Fx2∧Gx2) is also false (since Fx2 is false), and

▷ (Fx3∧Gx3) is also false (since Fx3 is false)

Example 2 ∃xFx∧∃xGx
Notice that the main operator in this is ∧, i.e. it’s a conjunction. So here we first have to
apply the truth-rule for ∧, and evaluate its two conjuncts ∃xFx and ∃xGx separately. And
to determine the truth value of each conjunct, we then use the truth-rule for existential
sentences. As it turns out, both ∃xFx and ∃xGx are true, meaning that our conjunction as a
whole also comes out true:

▷ ∃xFx∧∃xGx is true, because

▷ ∃xFx is true
▷ that’s because Fx1 is true

▷ and ∃xGx is also true
▷ that’s because Gx2 is true

Notice that Gx3 is of course also true, so I could instead have given this as my reason for
why ∃xGx is true. It doesn’t matter whether I pick 2 or 3 — as long as I can point to at least
one object that satisfies ‘Gx’, that’s enough for ∃xGx to be true.

What these two examples illustrate is that we always have to identify the main operator,
and then apply the truth-rule appropriate to that operator. In ‘∃x(Fx∧Gx)’, the main oper-
ator is the existential quantifier, so I apply the truth-rule for the quantifier, and see whether
I can find an object to make the whole conjunction ‘(Fx∧Gx)’ true. In ‘∃xFx∧∃xGx’, by
contrast, the main operator is ∧, so here I do not have to find a single object to make both
‘Fx’ and ‘Gx’ true. Rather I consider the two conjucts ‘∃xFx’ and ‘∃xGx’ separately. Then
I check, first, whether any object satisfies ‘Fx’, and second whether any object (perhaps a
different one) satisfies ‘Gx’. Since I can find an object in each case, both ‘∃xFx’ and ‘∃xGx’
are true; and this means that ‘∃xFx∧∃xGx’ is true by the truth-rule for conjunction.

Things get more complicated with sentences that contain nested quantifiers, like ∃x∀yLxy.
Let’s determine the truth value of this on the following interpretation:

Interpretation B

Domain: 1, 2, 3
L: ⟨2,1⟩, ⟨2,2⟩, ⟨2, 3⟩

1 2

3

Example 3 ∃x∀yLxy
If we paraphrase this in English, it says that there is some object x which bears the relation L
to every object y. And indeed there is such an object in Interpretation B, namely the number
2: this number bears L to 1, and to itself, and also to 3, that is, to every object in the domain.
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To put the same point formally: in order for ‘∃x∀yLxy’ to be true, there has to be at least
one object o that makes ∀yLxoy true. And there is such an object, namely 2. So ‘∃x∀yLxy’
is true because ∀yLx2y is true. Next we ask why ∀yLx2y is true. That’s because no matter
which object o we pick for y to refer to, ‘Lx2yo’ comes out true. That is, Lx2y1, and Lx2y2

and Lx2y3 are all true. Our official explanation in other words looks like this:

▷ ∃x∀yLxy is true because:

▷ ∀yLx2y is true. And this is because:
▷ Lx2y1 is true, and

▷ Lx2y2 is true, and

▷ Lx2y3 is true

Although sentences with nested quantifiers occur most commonly with many-place pred-
icates, nested quantifiers can occur in combination with just one-place predicates too. Let’s
return to Interpretation A, and consider a case like this for our final example.

Example 4 ∃x(Fx→∀y(Hy↔ Gx))
The main operator is the existential quantifier, so its truth-rule tells us that we have to see
whether there is any object o that would make (Fxo→∀y(Hy↔Gxo)) true on Interpretation
A. In fact, an assignment of 1 to ‘x’ will do it: the conditional (Fx1→∀y(Hy↔Gx1)) comes
out true because its antecedent Fx1 is true and its consequent ∀y(Hy↔ Gx1) is also true.

To explain why ‘∀y(Hy↔ Gx1)’ is true, we need to apply the truth-rule for the universal
quantifier: this is true is because no matter what object o we pick, Hyo↔ Gx1 is true. That
is: Hy1↔ Gx1 is true, and Hy2↔ Gx1 is true, and Hy3↔ Gx1 is also true. The complete
explanation for why Example 4 is true on Interpretation A then looks like this:

▷ ∃x(Fx→∀y(Hy↔ Gx)) is true because:

▷ Fx1→∀y(Hy↔ Gx1) is true. And this is because:
▷ the antecedent Fx1 is true, and

▷ the consequent ∀y(Hy↔ Gx1) is also true. This in turn is because:
▷ (Hy1↔ Gx1) is true (since Hy1 and Gx1 are both false) and

▷ (Hy2↔ Gx1) is true (since Hy2 and Gx1 are both false) and

▷ (Hy3↔ Gx1) is true (since Hy3 and Gx1 are both false)

An explanation of this sort is called a SEMANTIC DEMONSTRATION of the truth or falsity
of a given sentence (in an interpretation). In the exercises below, you should give semantic
demonstrations like this to justify your claims about the truth values of sentences.

■ Exercises 7.5
A. Take the following interpretation, and determine the truth value of each sentence below
on this interpretation (remember to give a semantic demonstration in each case):
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Domain: 1, 2
F : 1, 2
G: 2
H:

F G H
1 + − −
2 + + −

1. ∃x(Fx∧Gx)
2. ∀x(Gx→ Hx)
3. ∀x(Fx→¬Hx)
4. ∀x(Fx↔ Gx)
5. ∀xGx→∃yHy
6. ∀xFx∧¬∃xGx
7. ∃x(Fx→¬Gx)∧∀x(Gx∨Hx)
8. ∃x(Gx∧∀y(Gy→ Hx))
9. ∀x(Gx→∃y(Fx∧¬Gy))

B. Determine the truth values of the sentences below on the provided interpretation

Domain: 1, 2, 3
R: ⟨1,3⟩, ⟨2,2⟩, ⟨2,3⟩, ⟨3, 2⟩ ⟨3,3⟩

1

2

3

1. ∃xRxx
2. ∀xRxx
3. ∀x∀yRxy
4. ∀x∃yRxy
5. ∃x∀yRxy
6. ∃x∀y¬Ryx
7. ∀y∃x¬Ryx
8. ∀x∀y(Rxy→ Ryx)
9. ∃x∀y(Rxy→ Ryx)

10. ∀x(∃yRxy→∃yRyx)

C. Determine the truth values of the sentences below on the provided interpretation (note
that in the diagram, I am using an oval to indicate the extension of the 1-place predicate
‘F’, and arrows for the extension of the 2-place predicate ‘R’):

Domain: 1, 2, 3
F : 1
R: ⟨1,1⟩, ⟨1,2⟩, ⟨1,3⟩, ⟨2,3⟩ ⟨3,2⟩,
⟨3,3⟩

1 2 3F

1. ∃x(Fx∧Rxx)
2. ∃x(¬Fx∧¬Rxx)
3. ∀x(Rxx→ Fx)
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4. ∀x(∃yRxy→ Fx)
5. ∀x∃yRxy
6. ∀x∃yRyx
7. ∀x(∃yRxy→ Fx)
8. ∀x∃yRxy→∃xFx
9. ∃x(∀yRxy∧∃yRyx)

7.6 Semantic Concepts

Defining truth in FOL was a bit tricky, due to the presence of quantifiers. But now that
we know what determines the truth value of an FOL sentence in an interpretation, we can
use that to define various other central logical notions. As you can see, these definitions
are basically the same as those from TFL, except that we here use the notion of truth in an
interpretation rather than truth on a valuation. In all the definitions below, the metavariables
ϕ1 . . .ϕn and ψ range over arbitrary sentences of FOL:3

ϕ1, . . . ,ϕn LOGICALLY ENTAIL ψ , written ϕ1, . . . ,ϕn ⊨ ψ , iff no interpre-
tation makes all of ϕ1, . . . ,ϕn true but ψ false.

ϕ is a LOGICAL TRUTH, written ⊨ ϕ , iff it is true in every interpretation.

ϕ is a CONTRADICTION iff it is false in every interpretation.

ϕ and ψ are LOGICALLY EQUIVALENT, written ϕ ⊨⊨ ψ iff they have the
same truth value in every interpretation.

ϕ1, . . . ,ϕn are JOINTLY CONSISTENT iff there is at least one interpretation
which makes them all true. They are JOINTLY INCONSISTENT iff there is
no such interpretation.

As in TFL, perhaps the most important of these concepts is entailment, since it is closely
related to the notion of a valid argument. We will say that an FOL argument:

ϕ1, . . . ,ϕn ∴ ψ

is VALID just in case its premises ϕ1, . . . ,ϕn logically entail its conclusion ψ . Since entail-
ment is defined in terms of the concept of truth-in-an-interpretation, we can use interpreta-
tions to investigate the validity of FOL arguments.

In particular, we can use interpretations to show that an argument is not valid, or that
the corresponding entailment fails. To show that a given argument is not valid, it suffices to
construct a single interpretation that simultaneously makes all of the premises true but still
makes the conclusion false. Such an interpretation is again called a counterexample to the
validity of the argument, or a COUNTERMODEL.

3Our logical concepts are in other words only defined for FOL sentences. By contrast, the official explana-
tion of truth in FOL, given in the Appendix, covers formulas in general, not just sentences.
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In the next two sections, we’ll look at how to construct countermodels. We’ll first look at
arguments that involve only one-place predicates, and then at ones that involve many-place
predicates. Of course, we can use interpretations to investigate the other logical concepts
we’ve defined above too. We’ll return to that once we’ve looked at our central concept of
entailment, or validity.

7.7 Countermodels with One-Place Predicates

Example 1 Let’s begin with one of the examples we looked at way back in §1.1.

All rabbits are mammals
Bugs Bunny is a mammal.
∴ Bugs Bunny is a rabbit.

As we noted at the time, this argument is intuitively not valid. We are now in a position to
demonstrate this formally. First, we can offer the following FOL symbolization:

∀x(Rx→Mx)
Mb
∴ Rb

Next, we can construct an interpretation which makes the premises true and the conclusion
false. One such interpretation would be the following:

Domain: all people
b: Lady Gaga
R: is an opera singer

M: is a vocalist

In this interpretation, ‘∀x(Rx→ Mx)’ is true, since every opera singer is a vocalist, and
‘Mb’ is also true, since Lady Gaga is a vocalist. But ‘Rb’ is false, since she is not an opera
singer, but a pop singer. So the argument isn’t valid. However, using this kind of counter-
model has the drawback that it requires us to appeal to real-world knowledge. After all, who
knows, maybe, Lady Gaga secretly performs in operas too, in which case ‘Rb’ is true in this
interpretation, and it doesn’t constitute a countermodel after all.

To avoid these kinds of issues, and to give some uniformity to our countermodels, we
will again use interpretations with domains that contain just positive integers, and give di-
rect specifications of the extensions of predicates, by listing the objects they are true of.
Furthermore, since we may have to explain why universal sentences like ‘∀x(Rx→ Mx)’
are true on our countermodels, and since the number of objects we have to consider to
do this increases the larger the domain is, we will try to construct countermodels with the
smallest possible domains.

Let’s begin by seeing if we can construct a countermodel that has just one object in its
domain, say the number 1. First off, let’s make sure our conclusion ‘Rb’ is false. To that end,
we can let ‘b’ refer to 1, and let the extension of the predicate ‘R’ remain empty. And to
make the second premise, ‘Mb’ true, we have to put 1 (the referent of ‘b’) into the extension
of ‘M’. So we have an interpretation like this:
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Domain: 1
b: 1
R:

M: 1

R M
b 1 − +

And luckily this also makes the first premise ‘∀x(Rx→Mx)’ true! After all, (Rx1→Mx1)
is true (since Rx1 is false). And since 1 is the only object in our domain, that suffices for
‘∀x(Rx→ Mx)’ to be true! So our simple interpretation makes both premises true but the
conclusion false, showing that the argument isn’t valid.

Example 2 Let’s look at a slightly more complex example:

∃x(Fx→ Gx) ∴ ∃xFx→∃xGx

We will again begin with the smallest possible domain, containing just 1, and think about
what’s needed to make the conclusion, ‘∃xFx→ ∃xGx’ false. Since this is a conditional,
we have to make its antecedent ‘∃xFx’ true and its consequent ‘∃xGx’ false. Using just the
number 1, we can do that as follows:

F G
1 + −

‘∃xFx’ is now true, since Fx1 is true. But ‘∃xGx’ is false, because Gx1 is false. The trouble is
that this interpretation will also make our premise ‘∃x(Fx→ Gx)’ false. After all, (Fx1→
Gx1) is false, and there’s no other object in the domain we could assign to ‘x’ to make
‘(Fx→ Gx)’ true.

So let’s expand our domain by adding a second object:

F G
1 + −
2 ? ?

We don’t yet know whether our two predicates should be true or false of this new object, so
I’ve left the cells next to it blank. Let’s begin with our conclusion ‘∃xFx→∃xGx’ again: we
want it to be false, so ‘∃xFx’ has to be true and ‘∃xGx’ has to be false. Of course, ‘∃xFx’
remains true because Fx1 is still true, so no change is needed here. But to keep ‘∃xGx’ false,
we need to make sure that our new object 2 is not in the extension of ‘G’ either:

F G
1 + −
2 ? −

Now, can we make the premise ‘∃x(Fx→ Gx)’ true? In fact we can, by making sure that
‘F’ is not true of 2. For in that case, (Fx2→ Gx2) will be true, because the antecedent Fx2

will be false. And that suffices for the truth of ‘∃x(Fx→ Gx)’. Our final countermodel,
and the accompanying semantic demonstrations showing that our premise is true and our
conclusion false, then look like this:
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Domain: 1, 2
F : 1
G:

F G
1 + −
2 − −

• ∃x(Fx→ Gx) is true because:

▷ (Fx2→ Gx2) is true (since Fx2 is false)

• ∃xFx→∃xGx is false because:

▷ ∃xFx is true
▷ since Fx1 is true

▷ but ∃xGx is false. This is because
▷ Gx1 is false, and

▷ Gx2 is also false

We only needed a single object in the domain of our first countermodel, but our second
countermodel ended up requiring two objects to simultaneously make the premises true and
the conclusion false. Other examples might require you to use three objects, or even four, or
more. Is there any upper bound on the number of objects that might be needed to produce a
countermodel?

It turns out that for arguments that only involve one-place predicates, the answer is ‘yes’.
The logician Leopold Löwenheim showed that if an FOL argument contains just n one-
place predicates, then if the argument is invalid, a countermodel with a domain of at most 2n

objects exists. So for something like Example 2, which involves two one-place predicates,
we can be sure that we won’t need more than four objects. As we’ll see, there is no such
upper bound for arguments with many-place predicates.

Before we turn to many-place predicates, though, one more general observation is in
order. Consider the following English argument:

All foxes are mortal.
∴ Every vixen is mortal.

This argument is valid in the sense that it’s impossible for its premise to be true but its
conclusion to be false: a vixen is just a female fox, so any possible world where every fox is
mortal has to be one where every vixen is mortal. But if we symbolize it, the resulting FOL
argument is not valid:

∀x(Fx→Mx)
∴ ∀x(V x→Mx)

It’s easy to construct an interpretation that makes the premise true and the conclusion false
(just put an object in the extension of V but not M or F).

So from the fact that the symbolization of an English argument in FOL is not valid, we
can’t straightaway conclude that the original English argument is not valid. What we can
conclude is just that the original English argument is not formally valid, or more specifically,
that it isn’t valid in virtue of the kind of logical form captured in its FOL symbolization. But
it might still be valid for other reasons — in this case, because of the connection between
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the meanings of ‘fox’ and ‘vixen’. As we discussed in §1.4, logic doesn’t aim to capture the
validity of arguments like this; it only cares about formally valid arguments.4

■ Exercises 7.7
A. Construct countermodels to demonstrate the following:

1. ∀xFx↔∀xGx ⊭ ∀x(Fx↔ Gx)
2. ∀x((Fx∧Gx)→ Hx) ⊭ ∀x(Fx∨Gx)∨∀x(Fx∨Hx)
3. ∀xFx→∃xGx ⊭ ∃xFx→∃xGx
4. (∀xFx∧∀xGx)→∀xHx ⊭ ∀x((Fx∧Gx)→ Hx)
5. ∃x∀y(Fx→ Gy) ⊭ ∃y∀x(Fx→ Gy)
6. ∀x∃y(Fy→ Gx) ⊭ ∀x(∃yFy→ Gx)
7. ∃x(∀yFy→ Gx) ⊭ ∃x∀y(Fy→ Gx)

7.8 Countermodels with Many-Place Predicates

Let’s next look at how to construct countermodels for arguments with many-place pred-
icates. First, though, there’s some new terminology that will come in handy. Two-place
predicates like ‘loves’, ‘respects’, ‘admires’ etc. express RELATIONS between objects (the
loving relation, the respecting relation, and so on). And there are some important character-
istics that relations like this can have:

A relation R is SERIAL iff ∀x∃yRxy

A relation R is REFLEXIVE iff ∀xRxx

A relation R is SYMMETRIC iff ∀x∀y(Rxy→ Ryx)

A relation R is TRANSITIVE iff ∀x∀y∀z((Rxy∧Ryz)→ Rxz)

One thing we can do, then, is to show that a relation’s having certain of these characteristics
does, or does not, imply its having some other characteristic. For example, being reflexive
implies being serial. After all: if every object bears R to itself, then every object bears R
to at least one thing, namely itself! You could do a natural deduction proof to show that
∀xRxx ⊢ ∀x∃yRxy. However, the implication does not hold in the other direction, i.e. being
serial does not imply being reflexive. Showing this will be our first example.

Example 1 ∀x∃yRxy ⊭ ∀xRxx
You can perhaps already think of a countermodel that would make ‘∀x∃yRxy’ true but

‘∀xRxx’ false, but again, we’re going to try to find the smallest countermodel to do the job.
Let’s start with a domain that just contains the number 1. For ‘∀x∃yRxy’ to be true, every
object in the domain has to bear the relation R to at least one object. So since we only have
one object, that means 1 has to bear R to itself:

4Of course we can make the above argument formally valid by adding a second premise: ‘Every vixen
is a fox’, which we’d symbolize as ‘∀x(V x→ Fx)’. But this is now a different FOL argument, one with two
premises.
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1

However, this now also makes ‘∀xRxx’ true, whereas our goal is to make this false.
So let’s expand our domain to include two objects, 1 and 2. In order for ‘∀xRxx’ to

be false, at least one of these objects must not bear R to itself, i.e. must not have an arrow
looping back to itself. And for ‘∀x∃yRxy’ to be true, every object has to bear R to something,
i.e. must have at least one outgoing arrow. One easy way to achieve both is to expand our
earlier model to look like this:

Domain: 1, 2
R: ⟨1,1⟩, ⟨2,1⟩ 1 2

The accompanying semantic demonstration runs like this:

• ∀x∃yRxy is true because:

▷ ∃yRx1y is true
▷ since Rx1y1 is true

▷ and ∃yRx2y is also true
▷ since Rx2y1

• ∀xRxx is false because:

▷ Rx2x2 is false

There are of course many other countermodels that would do the job just as well. But
what we have in any case discovered is that at least two objects are necessary to show that
the entailment from seriality to reflexivity fails.

Example 2 Next, let’s show the following:

∀xLxx,∀x∀y(Lxy→ Lyx) ⊭ ∃x∀yLxy

That is: a relation L’s being both reflexive and symmetric does not imply that that there is
some object x that bears L to everything (there’s no official name for this latter characteris-
tic). If we begin with a domain containing just 1, then to make ‘∀xLxx’ true, we would have
to do the following:

1

However, since we want to make ‘∃x∀yLxy’ false, we need to make sure that for every x,
there is at least one object it doesn’t bear L to, i.e. we want the following to hold: ∀x∃y¬Lxy.
And the trouble is that as things stand, every object does bear L to something.

So let’s try it with two objects. Again, to make ‘∀xLxx’ true, they both need to bear L to
themselves:
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1 2

Notice that at this point, ‘∀x∃y¬Lxy’ holds. For every object we can find at least one thing it
doesn’t bear L to: 1 doesn’t bear L to 2, and 2 doesn’t bear L to 1. We still have to make sure
that symmetry holds, i.e. that ‘∀x∀y(Lxy→ Lyx)’ is true. But if you think about it, symmetry
does hold in our diagram: everything that 1 bears L to — which is just itself — also bears
L back to 1. And similarly, everything that 2 bears L to — which is just itself — also bears
L back to 2. So we’re done! Our countermodel and accompanying semantic demonstration
(which gets pretty involved in the case of symmetry!) looks like this:

Domain: 1, 2
R: ⟨1,1⟩, ⟨2,2⟩ 1 2

• ∀xLxx is true because:

▷ Lx1x1 is true, and

▷ Lx2x2 is also true

• ∀x∀y(Lxy→ Lyx) is true because:

▷ ∀y(Lx1y→ Lyx1) is true, since:
▷ (Lx1y1→ Ly1x1) is true (because Lx1y1 and Ly1x1 are both true), and
▷ (Lx1y2→ Ly2x1) is also true (because Lx1y2 is false)

▷ and ∀y(Lx2y→ Lyx2) is true, since:
▷ (Lx2y1→ Ly1x2) is true (because Lx2y1 is false), and

▷ (Lx2y2→ Ly2x2) is also true (because Lx2y2 and Ly2x2 are both true)

• ∃x∀yLxy is false because:

▷ ∀yLx1y is false, since:
▷ Lx1y2 is false

▷ and ∀yLx2y is also false, since
▷ Lx2y1 is false

Again, the countermodel we arrived at is not the only one possible. The following would
work too, for example, and might be more intuitive:

1 2 3

But with three objects in the domain, giving a semantic demonstration would require
more work. To show that ‘∀x∀y(Lxy→ Lyx)’ holds, for example, we’d have to show that
‘∀y(Lxy→ Lyx)’ is true no matter which of our three objects we assign to ‘x’; and then
relative to each choice for ‘x’, we’d have to show that ‘(Lxy→ Lyx)’ is true no matter what
we assign to ‘y’. So we’d have to consider nine different assignments of objects to ‘x’ and
‘y’ in total, whereas the demonstration above only required us to look at four assignments.
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■ Exercises 7.8
A. Construct countermodels to demonstrate the following:

1. ∀x∃yLxy ⊭ ∃x∀yLxy
2. ∀x∃yLyx ⊭ ∀x∃yLxy
3. ∃x(Fx∧∀yRxy) ⊭ ∀x(Fx→∃yRxy)
4. ∃x(∃yAxy∧¬∃yAyx) ⊭ ∃x∀y(Axy→ Ayx)
5. ∀x(∀yRxy→∃z∀wRwz) ⊭ ∀x∃y∀z(Rxy↔ Rzy)

7.9 Validity and Decidability

Let’s investigate one more argument involving a two-place predicate:

∀x∃yRxy,∀x∀y∀z((Rxy∧Ryz)→ Rxz) ∴ ∃xRxx

For this to be valid, the seriality and transitivity of R would together have to imply that some
object bears R to itself (again, there’s no official name for this latter characteristic). Let’s
see if we can construct a countermodel.

To make the conclusion ‘∃xRxx’ false, we have to make sure that no object in our inter-
pretation bears R to itself, i.e. there can be no arrows that loop from an object onto itself.
And as we already noticed at the hand of Example 1 in the previous section, for seriality to
hold in a domain of just one object, that object would have to bear the relation to itself. So
we cannot make seriality true and ‘∃xRxx’ false with just one object.

So let’s move to a domain with two objects. We can make seriality hold while avoiding
any self-looping arrows like this:

1 2

But now consider how to make transitivity, i.e. ‘∀x∀y∀z((Rxy∧Ryz)→ Rxz)’, hold. For this
to be true, the conditional ‘(Rxy∧Ryz)→ Rxz’ has to be true no matter which objects we
assign to each of the variables ‘x’, ‘y’, and ‘z’. So suppose we assign 2 to ‘y’, and 1 to
both ‘x’ and ‘z’: (Rx1y2∧Ry2z1)→ Rx1z1. Both Rx1y2 and Ry2z1 are true, so for the latter
conditional to be true, the consequent Rx1z1 has to be true. But this would now require a
self-looping arrow from 1 back to 1! So we can’t get what we want with just two objects.

Let’s try three objects. What we’ve just seen is that we can’t have any symmetric arrows,
since that would introduce a self-looping arrow by transitivity. With three objects, we can
secure seriality (making sure every object has an arrow going to some object) while avoiding
both symmetric and self-looping arrows like this:

1 2 3

But again, transitivity causes a problem. Let’s assign 2 to ‘x’, 3 to ‘y’, and 1 to ‘z’, giving
us: (Rx2y3∧Ry3z1)→ Rx2z1. Since both Rx2y3 and Ry3z1 are true, for the conditional to be
true, the consequent Rx2z1 has to be true. That would mean adding an arrow going from
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2 to 1. But since we already have an arrow going from 1 to 2, that would reintroduce a
double-headed arrow!

What this shows is that we can’t have any arrows that “go backward” in our interpretation,
to an earlier number. We could add a fourth object so that 3’s arrow can move forward:

1 2 3 4

?

But 4 also has to have an arrow going to some object (for seriality). And that arrow can’t go
backward to 1, 2, or 3, and can’t go from 4 to itself, so what’s to be done? Does this mean
it’s impossible to construct a countermodel, and that our argument is therefore valid?

No, it does not: the argument is invalid, and a countermodel exists, but it requires infinitely
many objects in its domain. The following is a countermodel, for example:

Domain: all positive integers
R: is less than (or: all pairs of integers ⟨m,n⟩ where m < n)

We can’t specify this interpreation “directly” by listing all the objects in the domain and all
the pairs in the extension of ‘R’, since there are infinitely many of them. But we can specify
the extension of ‘R’ via the English predicate. This interpretation does what we want:

• ‘∀x∃yRxy’ is true, since for every positive integer x we can find a y such that x < y
• ‘∀x∀y∀z((Rxy∧Ryz)→ Rxz)’ is true, since if x < y and y < z, it follows that x < z.
• ‘∃xRxx’ is false, since there exist no integer x such that x < x.

What we’ve seen, then, is that showing an FOL argument to be invalid may require an
interpretation with infinitely many objects. As mentioned in §7.7, this is not the case for
FOL arguments that contain only one-place predicates. If such an argument is invalid, then
there exists a countermodel with a domain of at most 2n objects (where n is the number of
one-place predicates the argument contains). Since there are finitely many interpretations
for n predicates using at most 2n objects, this means that a computer could in principle
crunch through all of those interpretations and determine if the argument is valid: if it finds
a countermodel among them, the argument is invalid, if it doesn’t, the argument is valid.

The same holds for TFL. Any TFL argument can be tested for validity by constructing
its joint truth table and checking wether any line (i.e. valuation) makes all the premises true
and the conclusion false. So a computer can be programmed to mechanically test any TFL
argument for validity.

What we’ve seen is that this does not hold for FOL arguments that contain two-place
predicates. Here there is no finite number of interpretations we could program a computer to
check such that, if it fails to find a countermodel among them, the argument is guaranteed to
be valid. And in fact, as the logicians Alan Turing and Alonzo Church independently proved
in 1936, there exists no mechanical test for validity in FOL. Validity in FOL is therefore said
to be UNDECIDABLE, in contrast to TFL, where validity is DECIDABLE via truth-tables.

Demonstrating FOL arguments to be valid therefore invariably requires some ingenuity
and insight — it’s not the kind of thing a computer can do. This is why we use natural
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deduction proofs to demonstrate validity in FOL: if methods that require ingenuity are go-
ing to be required anyhow, we might as well use the method of natural deduction.5 To be
sure, one can also give semantic proofs to demonstrate the validity of FOL arguments. For
example to show that the following entailment holds:

∃x(Fx∧Gx) ⊨ ∃xFx∧∃xGx

we could give the following semantic proof in English:

Semantic Proof: consider some arbitrary interpretation I, and suppose ∃x(Fx∧Gx)
is true in I. This means there is some object in the domain of I, let’s call it a, such
that (Fxa ∧Gxa) is true in I. But then since Fxa is true in I, this means ∃xFx is
true in I. And similarly, since Gxa is true in I, it follows that ∃xGx must be true in
I. Therefore ∃xFx∧∃xGx is true in I. Since Iwas an arbitrary interpretation, we
can conclude that every interpretation that makes ∃x(Fx∧Gx) true must also make
∃xFx∧∃xGx true, meaning that the entailment above holds.

However, we can also give a natural deduction proof, which goes through a very similar line
of reasoning:

1 ∃x(Fx∧Gx) Premise

2 Fa∧Ga Assumption (flag a)

3 Fa ∧E 2

4 ∃xFx ∃I 3

5 Ga ∧E 2

6 ∃xFx ∃I 5

7 ∃xFx∧∃xGx ∧I 4, 6

8 ∃xFx∧∃xGx ∃E 1, 2–8

Natural deduction proofs do not, however, allow use to demonstrate that arguments are
invalid. To do this, we have to rely on the method of constructing countermodels. And
that’s what we have been doing in the last several sections.

7.10 Working with Other Semantic Concepts

So far, we’ve just been focusing on validity, or entailment. But we can use interpretations,
as well as natural deduction proofs, in connection with other semantic concepts too.

Take the concept of logical truth first. To show that some FOL sentence ϕ is not a logical
truth, it suffices to construct an interpretation that makes it false. And to show that it is a
logical truth, we can give a natural deduction that proves ϕ as a theorem. This gives us a

5Of course, by using natural deductions to demonstrate validity, we are relying on the fact that our proof
system is sound, i.e. only lets us prove valid arguments. See the introduction to Chapter 6 on this concept.
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way to approach contradictions as well: since ϕ is a contradiction iff ¬ϕ is a logical truth,
we can show that ϕ is a contradiction by proving ¬ϕ as a theorem. And to show that ϕ is
not a contradiction, it suffices to construct an interpretation in which it is true.

Next consider logical equivalence. To show that ϕ and ψ are not logically equivalent, all
we need to do is construct an interpretation on which one of them is true and the other is
false. And to show that ϕ and ψ are equivalent, we can give a natural deduction that proves
ϕ ↔ ψ as a theorem, since ϕ and ψ are equivalent just in case ϕ ↔ ψ is a logical truth.

Lastly, take the concept of consistency. To show that some sentences are jointly consis-
tent, it suffices to give an interpretation on which they are all true. As for inconsistency,
notice that it connects to entailment in the following way:

If ϕ1, . . . ,ϕn ⊨⊥, then ϕ1, . . . ,ϕn are jointly inconsistent

For suppose ϕ1, . . . ,ϕn ⊨⊥. This means there’s no interpretation that makes all of ϕ1, . . . ,ϕn

true but ⊥ false. However, since every interpretation makes ⊥ false, this just means that
there’s no interpretation that makes all of ϕ1, . . . ,ϕn true. That is, ϕ1, . . . ,ϕn are inconsistent.
So if we want to show that ϕ1, . . . ,ϕn are inconsistent, we can do that by giving a natural
deduction proof showing that ϕ1, . . .ϕn ⊢ ⊥.

The following table summarizes what is needed to demonstrate that a given concept does
or does not apply:

Yes No
logical truth? give a proof give an interpretation
contradiction? give a proof give an interpretation
equivalent? give a proof give an interpretationl
consistent? give an interpretation give a proof
valid? give a proof give an interpretation
entailment? give a proof give an interpretation

■ Exercises 7.10
A. Show that the following pairs of sentences are not logically equivalent (by constructing
an interpretation for each pair that makes one true but the other false):

1. ∃xJx, ∃x¬Jx
2. ∃xJx∧∃xHx,∃x(Jx∧Hx)
3. ∀xRxx, ∃xRxx
4. ∃xPx→∃yQy, ∃x(Px→∃yQy)
5. ∀x(Px→¬Qx), ∃x(Px∧¬Qx)
6. ∃x(Px∧Qx), ∃x(Px→ Qx)
7. ∀x(Px→ Qx), ∀x(Px∧Qx)
8. ∀x∃yRxy, ∃x∀yRxy
9. ∀x∃yRxy, ∀x∃yRyx

B. Show that the following sentences are jointly consistent (i.e. there’s an interpretation that
makes them all true):
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1. ∀yGy,∀x(Gx→ Hx),∃y¬Iy
2. ∃x(Bx∨Ax),∀x¬Cx,∀x

[
(Ax∧Bx)→Cx

]
3. ∃xXx,∃xY x,∀x(Xx↔¬Y x)
4. ∀x(Px∨Qx),∃x¬(Qx∧Px)
5. ∃z(Nz∧Ozz),∀x∀y(Oxy→ Oyx)
6. ¬∃x∀yRxy,∀x∃yRxy

7.11 Semantics for Identity

As mentioned in §5.9, FOL is standardly supplemented with a primitive logical symbol
= for identity. In §6.5 we looked at the deduction rules that govern identity, with which
we were then able to prove various logical truths involving identity, like that everything is
identical to itself, ∀x x = x.

Similarly, we now need to say something about the semantics of identity, specifically
how to determine the truth values of identity statements in an interpretation. In this case,
the semantics is very simple:

For any names a and b, a= b is true in a given interpretation iff a and
b refer to very same object in that interpretation.

So if, for example, our interpretation specifies that the name ‘m’ refers to 1, that ‘n’ refers
to 2, and that ‘o’ also refers to 2, then ‘m = n’ would be false (since 1 and 2 aren’t identical)
whereas ‘n = o’ would be true (since 2 is identical to 2). And of course, things like ‘m = m’
or ‘n = n’ will always be true, on any interpretation, since whatever ‘n’ (or ‘m’) refers to, it
will be identical to itself.

This clause only covers identity statements involving names. For identity statements in-
volving variables, we again have to bring in variable assignments. E.g. ‘x = y’ comes out
true if the variables ‘x’ and ‘y’ are both assigned the value 1, say, but it would come out
false if ‘x’ were assigned the value 1 and ‘y’ the value 2. On the other hand, ‘x = x’ comes
out true no matter what value is assigned to ‘x’. See the Appendix in §7.12 below for the
official semantics that makes the role of variable assignments explicit.

We can also consider quantified sentences involving identity. In §5.9 we saw how to
symbolize numerical claims using identity. The claim that exactly one object exists can, for
example, be symbolized as ‘∃x∀y x = y’, and the claim that exactly two objects exist can be
symbolized as ‘∃x∃y(x ̸= y∧∀z(z = x∨ z = y))’.6 Using our semantics, we can now show
that ‘∃x∀y x = y’ is indeed false if the domain contains more than one object:

Domain: 1, 2

∃x∀y x = y is false because:

▷ ∀y x1 = y is false
▷ since x1 = y2 is false.

▷ and ∀y x2 = y is also false
▷ since x2 = y1 is false.

6Again, x ̸= y is jus shorthand for ¬(x = y)
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Similarly, we could show that ‘∃x∃y(x ̸= y∧ ∀z(z = x∨ z = y))’, that is, the claim that
exactly two objects exist, is false on a domain that contains 1, 2, and 3. (Though for this, the
complete semantic demonstration would be quite long, since there are three possible values
to consider for ‘x’, and then three possible values for ‘y’ in each case!)

■ Exercises 7.11
A. Consider again the following interpretation:

Domain: 1, 2, 3
R: ⟨1,3⟩, ⟨2,2⟩, ⟨2,3⟩, ⟨3, 2⟩ ⟨3,3⟩

1

2

3

Determine whether each of the following sentences is true or false in this interpretation, and
give a semantic demonstration to justify your answer.

1. ∀x(∃y x ̸= y∧∃y x = y)
2. ∀x∃y(x ̸= y∧ x = y)
3. ∃x∀y x = y
4. ∃x∃y(x ̸= y∧ (Rxy∧Ryx))
5. ∃x∀y(Rxy↔ x = y)
6. ∃x∀y(Ryx↔ x = y)
7. ∃x∃y((x ̸= y∧Rxy)∧∀z(Rzx↔ y = z))

B. Show that each of the following is neither a logical truth nor a contradiction:

1. ∀x∃y x ̸= y
2. ∃x(x = a∧ x = b)
3. ∀x∀y∀z((x = y∨ x = z)∨ y = z)
4. ∃x∃y x ̸= y

Show that the following sentences are jointly consistent (i.e. there’s an interpretation that
makes them all true):

5. ¬Raa, ∀x(x = a∨Rxa)
6. ∀x∀y∀z(x = y∨ y = z∨ x = z), ∃x∃y ¬x = y
7. ∃x∃y(Zx∧Zy∧ x = y), ¬Za, a = b

7.12 Appendix: Semantics with Variable Assign-
ments

In §7.4 we explained the semantics for quantifiers using the notion of a variable assignment:
an assignment of an object to a variable, representing our decision to temporarily treat the
variable as if it referred to that object. However, once we introduce variable assignments
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to deal with quantifiers, we should really go back and re-do our semantics with variable
assignments in mind from the beginning, even when we’re just looking at atomic sentences.

To see why, consider a simple example like ‘∀xFx’, and suppose our domain contains
just the numbers 1 and 2. Then in order for ‘∀xFx’ to be true, the formula ‘Fx’ needs to be
true on the assignment [x : 1] and also on [x : 2]. But what is required for ‘Fx’ to be true on
[x : 1], say? The answer, of course, is that ‘F’ has to be true of 1, the object we’re treating
‘x’ as referring to. But the semantics we gave for atomic sentences doesn’t technically tell
us this! What we said in §7.3 was just the following:

When R is an n-place predicate and c1,c2, . . . ,cn are names, the sentence
Rc1c2 . . .cn is true in a given interpretation iff R is true of the objects
referred to by c1,c2, . . . ,cn (in that order) in that interpretation

This doesn’t mention variable assignments anywhere. And furthermore, it only deals with
atomic sentences, things that only contain names. ‘Fx’ contains a variable instead of a name.
It is merely a formula, so the above explanation simply does not apply to it.

To remedy this situation, we need to return to the official explanation of the syntax, or
grammar, of FOL that we gave way back in §5.10. Recall that we there defined the general
class of formulas of FOL, among which we then singled out the smaller class of FOL
sentences. We did this in four steps. First, we stipulated that a TERM is to be any name
or any variable. Second, we said that an ATOMIC FORMULA is anything that results from
combining any predicate (including the identity symbol) with an appropriate number of
terms. Third, we said that a FORMULA, more generally, is anything that can be built up
from atomic formulas using truth functional operators and quantifiers. And lastly, we then
said that a SENTENCE is any formula that contains no free, or unbound, variables.

We here have to do something similar. We will first have to give a general explanation
of truth that covers all formulas, such as ‘Fx’, and then extract from that a notion of truth
for just sentences. In particular, what we’ll do is to explain what is required for any formula
whatsoever to be true in an interpretation relative to a variable assignment. In what follows,
let’s use I for an arbitrary interpretation, and [] for an arbitrary variable assignment. So we
will give a general explanation of what is required for any formula to be true on [] in I .
Later we’ll then use that to say what’s required for a sentence to be true in an interpretation.

To begin, we first give an expanded notion of reference that covers both names (like
a,b,c . . .) and variables (like x,y,z . . .). Again: a variable doesn’t actually refer to anything,
since it isn’t a name. But relative to a variable assignment, variables can be construed as
referring to things. So:

For any term t (name or variable), the REFERENT OF t ON [] IN I is:

▷ whatever object the interpretation I assigns to t, if t is a name, and

▷ whatever object the assignment [] assigns to t, if t is a variable

We can now use this expanded notion of reference to explain truth for all atomic formulas,
whether they contain names or variables:

When R is an n-place predicate and t1, . . . , tn are any terms (names or
variables), the formula Rt1 . . . tn is true on [] in I iff R is true of the
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objects referred to by t1, . . . , tn (in that order) on [] in I.

And for any terms t1 and t2, the formula t1 = t2 is true on [] in I iff t1
and t2 refer to the same thing on [] in I.

This now does specify what’s required for e.g. ‘Fx’ to be true on [x : 1]. What’s required
is that ‘F’ be true of the referent of ‘x’ on [x : 1]. And the referent of ‘x’ on this assignment
is of course just 1, give our expanded notion of reference. So ‘F’ has to be true of 1. With
atomic formulas covered, we can go on to explain truth for all complex formulas:

¬ϕ is true on [] in I iff ϕ false on [] in I

ϕ ∧ψ is true on [] in I iff both ϕ and ψ are true on [] in I

ϕ ∨ψ is true on [] in I iff either ϕ or ψ are true on [] in I

ϕ → ψ is true on [] in I iff either ϕ is false or ψ is true on [] in I

ϕ ↔ ψ is true on [] in I iff ϕ and ψ have the same truth value on [] in I

∀vϕ(. . .v . . .) is true on [] in I iff for every object o in the domain,
ϕ(. . .v . . .) is true on [v:o] in I

∃vϕ(. . .v . . .) is true on [] in I iff for at least one object o in the domain,
ϕ(. . .v . . .) is true on [v:o] in I.

In the claues governing the quantifiers, [v:o] is the assignment that’s just like our arbitrary
assignment [] in every respect, except that it is stipulated to assign the object o to the vari-
able v. The idea, again, being that we go through each object o in the domain, and check
whether the formula ϕ(. . .v . . .) is true when that object o is assigned to the variable v. If
so, ∀vϕ(. . .v . . .) is true, if not, it is false. On the other hand, for an existential sentence
∃vϕ(. . .v . . .) to be true, it’s enough if at least one object makes ϕ(. . .v . . .) true.7

Given all of this, we can now say what is required for any sentence, i.e. any closed
formula, or formula with no free variables, to be true in an interpretation I:

For any FOL sentence ϕ and any interpretation I, ϕ is true in I iff ϕ is true
in I on any assignment [] whatsoever.

With this explanation of truth for sentences in place, the definition of the various logical
concepts (like entailment, logical truth, equivalence etc.) now proceeds as it did in §7.6.

7As in 6.1, we are here using ϕ(. . . v . . . ) to represent a formula ϕ that contains zero or more free occur-
rences of v, allowing for vacuously quantified formulas like ‘∀xFa’ or ‘∀x∃xFx’ where the formula to which
the quantifier attaches contains no free occurrences of the quantified variable.
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Truth Functional Operators (Ch. 3)

¬ ϕ ( ϕ ∧ ψ ) ( ϕ ∨ ψ ) ( ϕ → ψ ) ( ϕ ↔ ψ )
F T T T T T T T T T T T T T
F T T F F T T F T F F T F F
T F F F T F T T F T T F F T
T F F F F F F F F T F F T F

Deduction Rules for TFL (Ch. 4)

Conjunction Introduction

m ϕ

n ψ

ϕ ∧ψ ∧I m, n

Conjunction Elimination

m ϕ ∧ψ

ϕ ∧E m

m ϕ ∧ψ

ψ ∧E m

Conditional Introduction

i ϕ Assumption

j ψ

ϕ → ψ →I i– j

Conditional Elimination

m ϕ → ψ

n ϕ

ψ →E m, n

Biconditional Introduction

i ϕ Assumption

j ψ

k ψ Assumption

l ϕ

ϕ ↔ ψ ↔I i– j, k–l

Biconditional Elimination

m ϕ ↔ ψ

n ϕ

ψ ↔E m, n

164
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m ϕ ↔ ψ

n ψ

ϕ ↔E m, n

Negation Introduction

m ϕ Assumption

n ⊥

¬ϕ ¬I m–n

Negation Elimination

m ϕ

n ¬ϕ

⊥ ¬E m, n

Indirect Proof

m ¬ϕ Assumption

n ⊥

ϕ IP m–n

Disjunction Introduction

m ϕ

ϕ ∨ψ ∨I m

m ϕ

ψ ∨ϕ ∨I m

Disjunction Elimination

m ϕ ∨ψ

i ϕ Assumption

j χ

k ψ Assumption

l χ

χ ∨E m, i– j, k–l

Reiteration

m ϕ

ϕ Reit m

Derived Rules for TFL (§4.11)

Sequent Derived Rule
ϕ → ψ,¬ψ ⊢ ¬ϕ MT
ϕ ∨ψ,¬ψ ⊢ ϕ DS
ϕ ∨ψ,¬ϕ ⊢ ψ DS
ϕ ⊢ ψ → ϕ PMI
¬ϕ ⊢ ϕ → ψ PMI
ϕ → ψ ⊢⊢ ¬ϕ ∨ψ Imp
¬(ϕ → ψ) ⊢⊢ ϕ ∧¬ψ NegImp
¬(ϕ ∧ψ) ⊢⊢ ¬ϕ ∨¬ψ DeM
¬(ϕ ∨ψ) ⊢⊢ ¬ϕ ∧ ¬ψ DeM
ϕ@ψ ⊢ ψ@ϕ Com
⊥ ⊢ ϕ EX
⊢ ϕ ∨¬ϕ LEM
ϕ ⊢⊢ ¬¬ϕ DN
(ϕ # ψ) ⊢⊢ (¬¬ϕ # ¬¬ψ) ⊢⊢ (¬¬ϕ # ψ) ⊢⊢ (ϕ # ¬¬ψ) SDN
¬(ϕ # ψ) ⊢⊢ ¬(¬¬ϕ # ¬¬ψ) ⊢⊢ ¬(¬¬ϕ # ψ) ⊢⊢ ¬(ϕ # ¬¬ψ) SDN

(where # can be any binary connective and @ can be any of ∨,∧,↔)



8. QUICK REFERENCE 166

Deduction Rules for FOL (Ch. 6)

Universal Elimination

m ∀vϕ(. . .v . . .)

ϕ(. . .c. . .) ∀E m

Universal Introduction

m c Flag

n ϕ(. . .c. . .)

∀vϕ(. . .v . . .) ∀I m–n

The Flag-ed name cmay not occur outside
the subproof.

Existential Introduction

m ϕ(. . .c. . .)

∃vϕ(. . .v . . .) ∃I m

Existential Elimination

m ∃vϕ(. . .v . . .)

i ϕ(. . .c. . .) Assumption (flag c)

j ψ

ψ ∃E m, i– j

The Flag-ed name cmay not occur outside
the subproof.

Identity Elimination

m a= b

n ϕ(. . .a. . .)

ϕ(. . .b. . .) =E m, n

Identity Introduction

c= c =I
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